| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| 不同B含量Mo-Si-B合金的高温抗氧化性能 | 
  					 
  					  										
						李斌1,2, 林小辉2, 李瑞1, 张国君1( ), 李来平2, 张平祥2 | 
					 
															
					1 西安理工大学材料科学与工程学院 西安 710048 2 西北有色金属研究院 西安 710016 | 
					 
										
						 | 
					 
   										
    					| High-Temperature Oxidation Resistance of Mo-Si-B Alloys with Different B Contents | 
  					 
  					  					  					
						Bin LI1,2, Xiaohui LIN2, Rui LI1, Guojun ZHANG1( ), Laiping LI2, Pingxiang ZHANG2 | 
					 
															
						1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China 2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China | 
					   
									 
				
				引用本文: 
				
								李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.	
																												 																				Bin LI,
																								Xiaohui LIN,
																								Rui LI,
																								Guojun ZHANG,
																								Laiping LI,
																												Pingxiang ZHANG. 
				High-Temperature Oxidation Resistance of Mo-Si-B Alloys with Different B Contents[J]. Acta Metall Sin, 2018, 54(12): 1792-1800.	                                                        				  
				
				
					
						
							
								
									
									
									
									
									 
          
          
            
             
			              
            
									            
									                
																														  
																 | [1]  | Akinc M, Meyer M K, Kramer M J, et al.Boron-doped molybdenum silicides for structural applications[J]. Mater. Sci. Eng., 1999, A261: 16 |  | [2]  | Kruzic J J, Schneibel J H, Ritchie R O.Fracture and fatigue resistance of Mo-Si-B alloys for ultra-high-temperature structural supplications[J]. Scr. Mater., 2004, 50: 459 |  | [3]  | Yu J L, Li Z K, Zheng X, et al.Superplasticity of Mo-9Si-8B-3Hf multiphase refractory alloy prepared by mechanical alloying and hot pressing sintering[J]. Acta Metall. Sin., 2011, 47: 317(喻吉良, 李中奎, 郑欣等. 机械合金化热压烧结Mo-Si-B多相难熔合金的超塑性[J]. 金属学报, 2011, 47: 317) |  | [4]  | Alur A P, Chollacoop N, Kumar K S.High-temperature compression behavior of Mo-Si-B alloys[J]. Acta Mater., 2004, 52: 5571 |  | [5]  | Pan K M, Zhang L Q, Wei S Z, et al.Study on the preparation process of T2 alloy in the Mo-Si-B system[J]. Acta Metall. Sin., 2015, 51: 1377(潘昆明, 张来启, 魏世忠等. Mo-Si-B三元系中T2相合金的制备工艺研究[J]. 金属学报, 2015, 51: 1377) |  | [6]  | Derkowitz-Mattuck J B, Dils R R. High-temperature oxidation II: Molybdenum silicides[J]. J. Electrochem. Soc., 1965, 112: 583 |  | [7]  | Bartlett R W, McCamont J W, Gage P R. Structure and chemistry of oxide films thermally grown on molybdenum silicides[J]. J. Am. Ceram. Soc., 1965, 48: 551 |  | [8]  | Meyer M K, Akinc M.Oxidation behavior of boron-modified Mo5Si3 at 800~1300 ℃[J]. J. Am. Ceram. Soc., 1996, 79: 938 |  | [9]  | Meyer M, Kramer M, Akinc M.Boron-doped molybdenum silicides[J]. Adv. Mater., 1996, 8: 85 |  | [10]  | Supatarawanich V, Johnson D R, Liu C T.Oxidation behavior of multiphase Mo-Si-B alloys[J]. Intermetallics, 2004, 12: 721 |  | [11]  | Wang F, Shan A D, Dong X P, et al.Microstructure and Oxidation behavior of directionally solidified Mo-Mo5SiB2(T2)-Mo3Si alloys[J]. J. Alloys Compd., 2008, 462: 436 |  | [12]  | Meyer M K, Thom A J, Akinc M.Oxide scale formation and isothermal oxidation behavior of Mo-Si-B intermetallics at 600~1000 ℃[J]. Intermetallics, 1999, 7: 153 |  | [13]  | Mendiratta M G, Parthasarathy T A, Dimiduk D M.Oxidation behavior of a Mo-Mo3Si- Mo5SiB2(T2) three phase system[J]. Intermetallics, 2002, 10: 225 |  | [14]  | Thom A J, Kramer M J, Mandal P, et al.Wet air and simulated combusion gas exposures of Mo-Si-B alloys[J]. Scr. Mater., 2005, 53: 915 |  | [15]  | Perepezko J H, Sakidja R.Oxidation resistant coatings for ultrahigh temperature refractory Mo-base alloys[J]. Adv. Eng. Mater., 2009, 11: 892 |  | [16]  | Majumdar S, D?nges B, Gorr B, et al.Mechanisms of oxide scale formation on yttrium-alloyed Mo-Si-B containing fine-grained microstructure[J]. Corros. Sci., 2015, 90: 76 |  | [17]  | Burk S, Gorr B, Christ H J.High temperature oxidation of Mo-Si-B alloys: Effect of low and very low oxygen partial pressures[J]. Acta Mater., 2010, 58: 6154 |  | [18]  | Nowotny H, Dimakopoulou E, Kudielka H.Untersuchungen in den dreistoffsystemen: Molybd?n-Silizium-Bor, Wolfram-Silizium-Bor und in dem system: VSi2-TaSi2[J]. Monatsh. Chem., 1957, 88: 180 |  | [19]  | Vance E R, Hayward P J, Hamon R F. Volatile losses from sphene glass-ceramic and borosilicate glass melts [J]. J. Am. Ceram. Soc., 1988, 71: C-318 |  | [20]  | Parthasarathy T A, Mendiratta M G, Dimikuk D M.Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)-Mo3Si alloys[J]. Acta Mater., 2002, 50: 1857 |  | [21]  | Thom A J, Summers E, Akinc M.Oxidation behavior of extruded Mo3Si3BX-MoSi2-MoB intermetallics from 600-1600 ℃[J]. Intermetallics, 2002, 10: 555 |  | [22]  | Rioult F A, Imhoff S D, Sakidja R, et al.Transient oxidation of Mo-Si-B alloys: Effect of the microstructure size scale[J]. Acta Mater., 2009, 57: 4600 |  | [23]  | Zhang G J, Kou H, Dang Q, et al.Microstructure and oxidation resistance behavior of lanthanum oxide-doped Mo-12Si-8.5B alloys[J]. Int. J. Refract. Met. Hard Mater., 2012, 30: 6 |  | [24]  | Doremus R H.Glass Science[M]. New York: Wiley>, 1973: 105 |  | [25]  | Morin E I, Wu J S, Stebbins J F.Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: The roles of fictive temperature and boron content[J]. Appl. Phys., 2014, 116A: 479 |  | [26]  | Yoshimi K, Nakatani S, Suda T, et al.Oxidation behavior of Mo5SiB2-based alloy at elevated temperature[J]. Intermetallics, 2002, 10: 407 |  | [27]  | Nomura N, Suzuki T, Yoshimi K, et al.Microstructure and oxidation resistance of a plasma sprayed Mo-Si-B multiphase alloy coating[J]. Intermetallics, 2003, 11: 735 |  | [28]  | Wang J, Li B, Ren S, et al.Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB2 addition at 1300 ℃[J]. J. Mater. Sci. Technol., 2018, 34: 635 |  
  | 
															   
																													 
									             
									           
             
			            			 
			 
             
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
             
           
      
									
									
		
									
									
									
									
									
									 | 
								 
							 
						 | 
					 
				 
			
		 |