|
|
粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟 |
魏雷1,2, 曹永青3, 杨海欧1,2( ), 林鑫1,2, 王猛1,2, 黄卫东1,2 |
1 西北工业大学凝固技术国家重点实验室 西安 710072 2 西北工业大学金属高性能增材制造与创新设计工业和信息化部重点实验室 西安 710072 3 洛阳理工学院材料科学与工程学院 洛阳 471000 |
|
Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed |
Lei WEI1,2, Yongqing CAO3, Haiou YANG1,2( ), Xin LIN1,2, Meng WANG1,2, Weidong HUANG1,2 |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China 3 School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China |
引用本文:
魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
Lei WEI,
Yongqing CAO,
Haiou YANG,
Xin LIN,
Meng WANG,
Weidong HUANG.
Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed[J]. Acta Metall Sin, 2018, 54(12): 1801-1808.
[1] | Kurz W, Fisher D J.Fundamentals of Solidification[M]. Aedermannsdorf, Switzerland: Trans Tech Publications, 1986: 1 | [2] | Akamatsu S, Plapp M.Eutectic and peritectic solidification patterns[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 46 | [3] | Hunt J D, Jackson K A.Binary eutectic solidification[J]. Trans. Metall. Soc. AIME, 1966, 236: 843 | [4] | Karma A.Beyond steady-state lamellar eutectic growth[J]. Phys. Rev. Lett., 1987, 59: 71 | [5] | Karma A, Sarkissian A.Morphological instabilities of lamellar eutectics[J]. Metall. Mater. Trans., 1996, 27A: 635 | [6] | Ginibre M, Akamatsu S, Faivre G.Experimental determination of the stability diagram of a lamellar eutectic growth front[J]. Phys. Rev., 1997, 56E: 780 | [7] | Akamatsu S, Faivre G.Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy[J]. Phys. Rev., 2000, 61E: 3757 | [8] | Akamatsu S, Perrut M, Bottin-Rousseau S, et al.Spiral two-phase dendrites[J]. Phys. Rev. Lett., 2010, 104: 056101 | [9] | Hecht U, Gránásy L, Pusztai T, et al.Multiphase solidification in multicomponent alloys[J]. Mater. Sci. Eng., 2004, R46: 1 | [10] | Powell G L F, Hogan L M. Undercooling in silver-copper eutectic alloys[J]. J. Inst. Met., 1965, 93: 505 | [11] | Kattamis T Z, Flemings M C.Structure of undercooled Ni-Sn eutectic[J]. Metall. Mater. Trans., 1970, 1B: 1449 | [12] | Li M J, Nagashio K, Ishikawa T, et al.Microtexture and macrotexture formation in the containerless solidification of undercooled Ni-18.7 at.% Sn eutectic melts[J]. Acta Mater., 2005, 53: 731 | [13] | Li J F, Li X L, Liu L, et al.Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy[J]. J. Mater. Res., 2008, 23: 2139 | [14] | Wei X X, Lin X, Xu W, et al.Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts[J]. Acta Mater., 2015, 95: 44 | [15] | Lin X, Cao Y Q, Wang Z T, et al.Regular eutectic and anomalous eutectic growth behavior in laser remelting of Ni-30wt% Sn alloys[J]. Acta Mater., 2017, 126: 210 | [16] | Cao Y Q, Lin X, Wang Z T, et al.Microstructural evolution of laser surface remelting remolten Ni-28 wt%Sn alloy under liquid nitrogen cooling[J]. Acta Phys. Sin., 2015, 64: 108103(曹永青, 林鑫, 汪志太等. 液氮冷却条件下激光快速熔凝Ni-28wt%Sn合金组织演变[J]. 物理学报, 2015, 64: 108103) | [17] | Kim S G, Kim W T, Suzuki T, et al.Phase-field modeling of eutectic solidification[J]. J. Cryst. Growth, 2004, 261: 135 | [18] | Yang Y J, Wang J C, Yang G C, et al.Multi-phase field simulation of eutectic morphology selection and interface destabilization[J]. Acta Metall. Sin., 2006, 42: 914(杨玉娟, 王锦程, 杨根仓等. 共晶形貌选择及界面失稳的多相场模拟[J]. 金属学报, 2006, 42: 914) | [19] | Zhu M F, Hong C P.Modeling of microstructure evolution in regular eutectic growth[J]. Phys. Rev., 2002, 66B: 155428 | [20] | Shi Y F, Xu Q Y, Liu B C.Simulation of eutectic growth in directional solidification by cellular automaton method[J]. Acta Metall. Sin., 2012, 48: 41(石玉峰, 许庆彦, 柳百成. 定向凝固共晶生长的元胞自动机数值模拟[J]. 金属学报, 2012, 48: 41) | [21] | Shan B W, Huang W D, Lin X, et al.Dendrite primary spacing selection simulation by the cellular automaton model[J]. Acta Metall. Sin., 2008, 44: 1042(单博炜, 黄卫东, 林鑫等. 元胞自动机模型模拟枝晶一次间距的选择[J]. 金属学报, 2008, 44: 1042) | [22] | Wei L, Lin X, Wang M, et al.A cellular automaton model for the solidification of a pure substance[J]. Appl. Phy., 2011, 103A: 123 | [23] | Wei L, Lin X, Wang M, et al.Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth[J]. Acta Phys. Sin., 2012, 61: 098104(魏雷, 林鑫, 王猛等. 基于MeshTV界面重构算法的二元合金自由枝晶生长元胞自动机模型[J]. 物理学报, 2012, 61: 098104) | [24] | Wei L, Lin X, Wang M, et al.Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model[J]. Physica, 2012, 407B: 2471 | [25] | Wei L, Lin X, Wang M, et al.A cellular automaton model for a pure substance solidification with interface reconstruction method[J]. Comput. Mater. Sci., 2012, 54: 66 | [26] | Wei L, Lin X, Wang M, et al.Effects of physical parameters on the cell-to-dendrite transition in directional solidification[J]. Chin. Phys., 2015, 24B: 078108 | [27] | Wei L, Lin X, Wang M, et al.Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification[J]. Mater. Discovery, 2016, 3: 17 | [28] | Wu Y, Piccone T J, Shiohara Y, et al.Dendritic growth of undercooled Nickel-Tin: Part II[J]. Metall. Mater. Trans., 1987, 18A: 925 | [29] | Zhao S.Solidification of undercooled Ag-28.1Cu-xSb Eutectic alloys [D]. Shanghai: Shanghai Jiao Tong University, 2009(赵素. Ag-28.1Cu-xSb共晶合金的过冷凝固 [D]. 上海: 上海交通大学, 2009) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|