Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 503-512    DOI: 10.11900/0412.1961.2021.00521
  综述 本期目录 | 过刊浏览 |
热障涂层高熵合金粘结层材料研究进展
赵晓峰, 李玲, 张晗, 陆杰()
上海交通大学 材料科学与工程学院 上海市先进高温材料及精密成型重点研究室 上海 200240
Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings
ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie()
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
Xiaofeng ZHAO, Ling LI, Han ZHANG, Jie LU. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. Acta Metall Sin, 2022, 58(4): 503-512.

全文: PDF(4008 KB)   HTML
摘要: 

热障涂层是现代高性能航空发动机的关键材料和技术,能够显著提升热端部件(比如涡轮叶片)的工作温度,同时保护热端部件不受高温氧化和腐蚀。金属粘结层作为热障涂层的关键组成部分,直接决定了热障涂层体系的服役性能和寿命。然而,传统MCrAlY粘结层因为存在抗氧化性能不足、粘结层-基体互扩散严重以及高温强度不足等问题,导致服役温度不足1100℃,无法满足下一代超高温热障涂层的应用温度要求。基于传统MCrAlY粘结层中存在的关键问题,本团队提出高熵合金粘结层的设计思路,旨在突破传统粘结层的应用温度局限。本文重点介绍了Y/Hf-NiCoCrAlFe高熵合金的抗氧化与抗热腐蚀性能,同时也对此高熵合金粉体与粘结层的抗氧化性能进行了阐述,最后对高性能高熵合金粘结层的发展方向进行了展望。

关键词 热障涂层金属粘结层高熵合金抗氧化性能抗热腐蚀性能    
Abstract

Thermal barrier coatings (TBCs) are essential material and technology for modern high-performance aeroengines. They can promote the service temperature of hot components (such as turbine blades) while protecting them from oxidation and corrosion. A key component of TBCs is the metallic bond coat, which directly governs the service performance and lifetime of TBCs. However, due to its low oxidation resistance, severe bond coat-substrate interdiffusion, and low high-temperature strength, the MCrAlY bond coat cannot meet the temperature requirement of next-generation ultrahigh temperature TBCs because its service temperature is lower than 1100oC. This study proposes a high-entropy alloy bond coat design strategy to address critical issues, aiming to break the temperature limitation of conventional bond coats. Herein, the oxidation and thermal corrosion resistance of Y/Hf-NiCoCrAlFe high-entropy alloy as well as the oxidation resistance of high-entropy alloy powder and bond coat are introduced and elaborated. Finally, the development trend of high-performance high-entropy alloy bond coat is summarized.

Key wordsthermal barrier coating    metallic bond coat    high-entropy alloy    oxidation resistance    thermal corrosion resistance
收稿日期: 2021-12-01     
ZTFLH:  TG141  
基金资助:国家自然科学基金项目(52102072)
作者简介: 赵晓峰,1977年生,教授,博士
图1  Y/Hf-NiCoCrAlFe高熵合金(HEA) TEM分析[31]
图2  HEA1、HEA2和HEA3的表面形貌[38]
图3  HEA1、HEA2和HEA3 3种高熵合金在1100℃下氧化250和1000 h后的截面形貌[38]
图4  Y/Hf-NiCoCrAlFe高熵合金在1200℃下氧化100和500 h后的截面与断面形貌[42]
图5  HEA3和NiCoCrAl合金热腐蚀160 h后的截面形貌以及S和O的面分布图[52]
图6  NiCoCrAlFe高熵合金粉体氧化之后的截面形貌与元素分布[55]
图7  传统NiCoCrAlY粘结层与NiCoCrAlFeY高熵合金粘结层在1150℃下循环氧化前后截面形貌
1 Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines [J]. MRS Bull., 2012, 37: 891
2 Guo H B, Gong S K, Xu H B. Research progress on new high/ ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
2 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
3 Zhang X F, Zhou K S, Song J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition [J]. J. Inorg. Mater., 2015, 30: 287
3 张小锋, 周克崧, 宋进兵 等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制 [J]. 无机材料学报, 2015, 30: 287
4 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
5 Yang L, Zhou Y C, Zhu W. Research progress in the real-time acoustic emission characterization of failure in thermal barrier coatings [J]. Mater. China, 2020, 39: 878
5 杨 丽, 周益春, 朱 旺. 热障涂层失效的声发射实时表征技术研究进展 [J]. 中国材料进展, 2020, 39: 878
6 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
7 Shillington E A G, Clarke D R. Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat [J]. Acta Mater., 1999, 47: 1297
8 Hutchinson J W, He M Y, Evans A G. The influence of imperfections on the nucleation and propagation of buckling driven delaminations [J]. J. Mech. Phys. Solids, 2000, 48: 709
9 Chen Y, Zhao X, Bai M, et al. A mechanistic understanding on rumpling of a NiCoCrAlY bond coat for thermal barrier coating applications [J]. Acta Mater., 2017, 128: 31
10 Shen Z Y, He L M, Xu Z H, et al. Morphological evolution and failure of LZC/YSZ DCL TBCs by electron beam-physical vapor deposition [J]. Materialia, 2018, 4: 340
11 Shen Z Y, He L M, Xu Z H, et al. LZC/YSZ DCL TBCs by EB-PVD: Microstructure, low thermal conductivity and high thermal cycling life [J]. J. Eur. Ceram. Soc., 2019, 39: 1443
12 Shen Z Y, He L M, Xu Z H, et al. LZC/YSZ double layer coatings: EB-PVD, microstructure and thermal cycling life [J]. Surf. Coat. Technol., 2019, 367: 86
13 Lance M J, Unocic K A, Haynes J A, et al. APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings [J]. Surf. Coat. Technol., 2015, 284: 9
14 Meng G H, Liu H, Liu M J, et al. Highly oxidation resistant MCrAlY bond coats prepared by heat treatment under low oxygen content [J]. Surf. Coat. Technol., 2019, 368: 192
15 Meng G H, Liu H, Xu P Y, et al. Superior oxidation resistant MCrAlY bond coats prepared by controlled atmosphere heat treatment [J]. Corros. Sci., 2020, 170: 108653
16 Evans A G, Clarke D R, Levi C G. The influence of oxides on the performance of advanced gas turbines [J]. J. Eur. Ceram. Soc., 2008, 28: 1405
17 Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 108-109: 73
18 Pomeroy M J. Coatings for gas turbine materials and long term stability issues [J]. Mater. Des., 2005, 26: 223
19 Chen Y, Zhao X, Dang Y, et al. Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application [J]. Acta Mater., 2015, 94: 1
20 Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
21 Lu J, Chen Y, Zhao C S, et al. Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium [J]. Corros. Sci., 2019, 153: 178
22 Yang L X, Zou Z H, Kou Z D, et al. High temperature stress and its influence on surface rumpling in NiCoCrAlY bond coat [J]. Acta Mater., 2017, 139: 122
23 Zheng L, Guo H B, Guo L, et al. New generation thermal barrier coatings for ultrahigh temperature applications [J]. J. Aeronaut. Mater., 2012, 32(6): 14
23 郑 蕾, 郭洪波, 郭 磊 等. 新一代超高温热障涂层研究 [J]. 航空材料学报, 2012, 32(6): 14
24 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
25 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
26 Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys: Fundamentals and Applications [M]. Switzerland: Springer, 2016: 1
27 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
28 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
29 Li Z Z, Zhao S T, Ritchie R O, et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
30 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
31 Lu J, Chen Y, Zhang H, et al. Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance [J]. Corros. Sci., 2020, 166: 108426
32 Liu Z Y, Gao W, Dahm K L, et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater., 1998, 46: 1691
33 Kaplin C, Brochu M. The effect of grain size on the oxidation of NiCoCrAlY [J]. Appl. Surf. Sci., 2014, 301: 258
34 Ma K K, Schoenung J M. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: Homogeneity and growth rate of TGO [J]. Surf. Coat. Technol., 2011, 205: 5178
35 Richer P, Zúñiga A, Yandouzi M, et al. CoNiCrAlY microstructural changes induced during cold gas dynamic spraying [J]. Surf. Coat. Technol., 2008, 203: 364
36 Hejrani E, Sebold D, Nowak W J, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 191
37 Peng H, Guo H B, He J, et al. Microscale lamellar NiCoCrAlY coating with improved oxidation resistance [J]. Surf. Coat. Technol., 2012, 207: 110
38 Lu J, Chen Y, Zhang H, et al. Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy [J]. Corros. Sci., 2020, 170: 108691
39 Busso E P, Evans H E, Qian Z Q, et al. Effects of breakaway oxidation on local stresses in thermal barrier coatings [J]. Acta Mater., 2010, 58: 1242
40 Li Y, Li C J, Yang G J, et al. Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying [J]. Surf. Coat. Technol., 2010, 205: 2225
41 Tolpygo V K, Clarke D R, Murphy K S. Oxidation-induced failure of EB-PVD thermal barrier coatings [J]. Surf. Coat. Technol., 2001, 146-147: 124
42 Lu J, Zhang H, Li L, et al. Y-Hf co-doped Al1.1CoCr0.8FeNi high-entropy alloy with excellent oxidation resistance and nanostructure stability at 1200oC [J]. Scr. Mater., 2021, 203: 114105
43 Lu J, Chen Y, Zhang H, et al. Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200oC [J]. Corros. Sci., 2020, 174: 108803
44 Evans H E, Taylor M P. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems [J]. Oxid. Met., 2001, 55: 17
45 Wang G, Gleeson B, Douglass D L. A diffusional analysis of the oxidation of binary multiphase alloys [J]. Oxid. Met., 1991, 35: 333
46 Pint B A. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys [J]. J. Am. Ceram. Soc., 2003, 86: 686
47 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
48 Naumenko D, Pint B A, Quadakkers W J. Current thoughts on reactive element effects in alumina-forming systems: In memory of john stringer [J]. Oxid. Met., 2016, 86: 1
49 Yang H B, Wang Y S, Wang X, et al. Research progress of hot corrosion and protection technology of gas turbine under marine environment [J]. Surf. Technol., 2020, 49: 163
49 杨宏波, 王源升, 王 轩 等. 燃气轮机在海洋环境下的热腐蚀与防护技术研究进展 [J]. 表面技术, 2020, 49: 163
50 Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
51 Bose S. High Temperature Coatings [M]. Boston: Butterworth-Heinemann, 2007: 155
52 Li L, Lu J, Liu X Z, et al. Al x CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25%NaCl at 900oC [J]. Corros. Sci., 2021, 187: 109479
53 Leyens C, Wright I G, Pint B A. Effect of experimental procedures on the cyclic, hot-corrosion behavior of NiCoCrAlY-type bondcoat alloys [J]. Oxid. Met., 2000, 54: 255
54 Zhang P M, Li X H, Moverare J, et al. The iron effect on hot corrosion behaviour of MCrAlX coating in the presence of NaCl at 900oC [J]. J. Alloys Compd., 2000, 815: 152381
55 Lu J, Li L, Zhang H, et al. Oxidation behavior of gas-atomized AlCoCrFeNi high-entropy alloy powder at 900-1100oC [J]. Corros. Sci., 2021, 181: 109257
56 Mullis A M, Farrell L, Cochrane R F, et al. Estimation of cooling rates during close-coupled gas atomization using secondary dendrite arm spacing measurement [J]. Metall. Mater. Trans., 2013, 44B: 992
57 Liang J T, Cheng K C, Chen S H. Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders [J]. J. Alloys Compd., 2019, 803: 484
58 Golightly F A, Stott F H, Wood G C. The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy [J]. Oxid. Met., 1976, 10: 163
59 Issartel C, Buscail H, Chevalier S, et al. Effect of yttrium as alloying element on a model alumina-forming alloy oxidation at 1100oC [J]. Oxid. Met., 2017, 88: 409
60 Luo L R, Zhang H, Chen Y, et al. Effects of the β phase size and shape on the oxidation behavior of NiCoCrAlY coating [J]. Corros. Sci., 2018, 145: 262
61 Yang G J, Xiang X D, Xing L K, et al. Isothermal oxidation behavior of NiCoCrAlTaY coating deposited by high velocity air-fuel spraying [J]. J. Therm. Spray Technol., 2012, 21: 391
62 Sadeghimeresht E, Markocsan N, Nylén P. Microstructural and electrochemical characterization of Ni-based bi-layer coatings produced by the HVAF process [J]. Surf. Coat. Technol., 2016, 304: 606
63 Sadeghimeresht E, Markocsan N, Nylén P. Microstructural characteristics and corrosion behavior of HVAF- and HVOF-sprayed Fe-based coatings [J]. Surf. Coat. Technol., 2017, 318: 365
64 Zhang P M, Sadeghimeresht E, Chen S L, et al. Effects of surface finish on the initial oxidation of HVAF-sprayed NiCoCrAlY coatings [J]. Surf. Coat. Technol., 2019, 364: 43
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[3] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[4] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[5] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[8] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[9] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[10] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[11] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[12] 郭磊, 高远, 叶福兴, 张馨木. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198.
[13] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[14] 余倩, 陈雨洁, 方研. 高熵合金中的元素分布规律及其作用[J]. 金属学报, 2021, 57(4): 393-402.
[15] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.