Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 257-271    DOI: 10.11900/0412.1961.2021.00286
  综述 本期目录 | 过刊浏览 |
难熔高熵合金的强韧化途径与调控机理
徐流杰1(), 宗乐2, 罗春阳2, 焦照临2, 魏世忠3()
1.河南科技大学 摩擦学与材料防护教育部工程研究中心 洛阳 471003
2.河南科技大学 材料科学与工程学院 洛阳 471003
3.河南科技大学 金属材料磨损控制与成型技术国家地方联合工程研究中心 洛阳 471003
Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys
XU Liujie1(), ZONG Le2, LUO Chunyang2, JIAO Zhaolin2, WEI Shizhong3()
1.Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Henan University of Science and Technology, Luoyang 471003, China
2.School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China
3.National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China
引用本文:

徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
Liujie XU, Le ZONG, Chunyang LUO, Zhaolin JIAO, Shizhong WEI. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. Acta Metall Sin, 2022, 58(3): 257-271.

全文: PDF(2394 KB)   HTML
摘要: 

在众多高熵合金中,由5种或5种以上的难熔金属元素,按照等原子比或者近等原子比混合形成的难熔高熵合金,凭借稳定的相结构和优异的高温性能,在高温材料领域具有广阔的应用前景。本文从难熔高熵合金的研究现状出发,综述典型难熔高熵合金的微观组织和相组成、室温和高温力学性能、强韧化机理与力学性能调控,并对未来难熔高熵合金的研究开发进行展望。首先,将难熔高熵合金按照组成相进行分类,分析了难熔高熵合金的微观组织和相组成,然后总结了难熔高熵合金的室温和高温力学性能与强韧化机理,并讨论了3种不同的强韧化方案,即化学成分调控、工艺调控和相结构调控。最后对未来难熔高熵合金的发展进行了展望,并对其未来重点研究方向提出了如下建议:借助计算机等技术,模拟与计算材料的性能与形成相,构建难熔高熵合金的研究平台与数据库;借助组合实验方法,加快筛选新的难熔高熵合金;掌握自上而下和自下而上的实验方法,探究性能优异的新型难熔高熵合金体系。

关键词 难熔高熵合金微观组织力学性能强韧化性能调控    
Abstract

Alloying has long been used to improve the properties of metals. Typically, the design concept starts with two metal elements as the foundation and small quantities of other elements are added to change or optimize the alloy properties. Recently, a new alloy has emerged, which combines several main elements to form new alloys, known as high-entropy alloys. Among them, refractory high-entropy alloys (RHEAs) made by mixing five or more refractory metal elements that have similar atomic ratios have wide application prospects in the field of high-temperature materials because of their stable phase structures and excellent high-temperature properties. This paper reviews the mechanical properties and microstructure of typical RHEAs, mechanism of toughening and mechanical property regulation of RHEAs, and prospects for the future development of RHEAs, starting with the current research status of RHEAs. The first section delves into the classification of RHEAs based on their constituent phases, and the microstructure and phase composition of the RHEAs are investigated. The second section summarizes the mechanical properties, strengthening, and toughening mechanisms of RHEAs at room and high temperatures. The third section illustrates and discusses three different strengthening and toughening schemes that have been used to modulate the mechanical properties of RHEAs, namely, chemical composition, process, and phase structure modulations. Finally, the future development of RHEAs have been forecasted and the following recommendations are made for key RHEA research trends in the future: simulating and calculating the materials properties and formation phases using computers and other technologies, development of a research platform and database for RHEAs, accelerating the screening of new RHEAs using combinatorial experimental methods, and acquiring top-down and bottom-up experimental methods to explore RHEAs systems with excellent properties.

Key wordsrefractory high-entropy alloy    microstructure    mechanical property    strengthening and toughening    performance modulation
收稿日期: 2021-07-12     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(U2004180);国家重点研发计划项目(2020YFB2008400)
作者简介: 徐流杰,男,1974年生,教授,博士;
宗 乐,男,1996年生,硕士生(共同第一作者);
图1  AlNbTiV的SEM像、TEM像和选区电子衍射(SAED)花样[23]
图2  双相Ta0.5HfZrTi合金微观组织的TEM像[36]
图3  TiZrHfBe(Cu7.5Ni12.5)棒材的宏观形貌、TEM像和对应的SAED花样[40]
图4  难熔高熵合金的室温屈服强度与断裂应变、延伸率的关系[3,4,11,21,23,24,27,28,32,33,36,38,41~77](a) effect of phase numbers on compressive yield strength and strain to fracture of RHEAs(b) effect of phase structure on compressive yield strength and strain to fracture of RHEAs(c) effect of phase numbers on tensile yield strength and elongation of RHEAs
图5  1700℃下烧结的NbTaTiV难熔高熵合金的TEM分析[84](a) bright field image of the alloy(b) higher magnification view of the Ti-C-O particle (Inset is SAED pattern along [001] zone axes)
图6  HfNbTaTiZr合金在不同退火条件下的微观组织演变[86](a) as-cast (Inset shows the locally enlarged view) (b) 1000oC, 24 h (c) 1200oC, 24 h(d) 1400oC, 24 h (Inset shows the locally enlarged view) (e) 1450oC, 168 h(f) magnified image of observed precipitates in condition of 1450oC, 168 h
图7  难熔高熵合金屈服强度与温度的关系[4,23,24,27,33,35,44,49~51,53,64,67,68,93~95]
图8  难熔高熵合金的化学成分调控[4,23,33,49,51,54,93](a) effect of adding different elements on yield strength at high temperature of RHEAs[4,23,33,49,51,93](b) effect of changing the content of molybdenum element on the mechanical properties of TiZrNbVMo x RHEAs[54]
1 Tsai Y L , Wang S F , Bor H Y , et al . Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures [J]. Mater. Sci. Eng., 2013, A571: 155
2 Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
3 Senkov O N , Wilks G B , Miracle D B , et al . Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
4 Senkov O N , Wilks G B , Scott J M , et al . Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
5 Liu C M , Wang H M , Zhang S Q , et al . Microstructure and oxidation behavior of new refractory high entropy alloys [J]. J. Alloys Compd., 2014, 583: 162
6 Gorr B , Azim M , Christ H J , et al . Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys [J]. J. Alloys Compd., 2015, 624: 270
7 Senkov O N , Senkova S V , Dimiduk D M , et al . Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. J. Mater. Sci., 2012, 47: 6522
8 Gorr B , Mueller F , Christ H J , et al . High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb- 20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
9 Li J M , Yang X , Zhu R L , et al . Corrosion and serration behaviors of TiZr0.5NbCr0.5V x Mo y high entropy alloys in aqueous environments [J]. Metals, 2014, 4: 597
10 Jayaraj J , Thinaharan C , Ningshen S , et al . Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
11 Wang S P , Xu J . TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, C73: 80
12 Yan D L , Song K K , Sun H G , et al . Microstructures, mechanical properties, and corrosion behaviors of refractory high-entropy ReTaWNbMo alloys [J]. J. Mater. Eng. Perform., 2020, 29: 399
13 Hung S B , Wang C J , Chen Y Y , et al . Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings [J]. Surf. Coat. Technol., 2019, 375: 802
14 Egami T , Guo W , Rack P D , et al . Irradiation resistance of multicomponent alloys [J]. Metall. Mater. Trans., 2014, 45A: 180
15 El-Atwani O , Li N , Li M , et al . Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
16 Waseem O A , Ryu H J . Powder metallurgy processing of a W x TaTiVCr high-entropy alloy and its derivative alloys for fusion material applications [J]. Sci. Rep., 2017, 7: 1926
17 Li T X , Lu Y P , Cao Z Q , et al . Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
17 李天昕, 卢一平, 曹志强 等 . 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
18 Chang S , Tseng K K , Yang T Y , et al . Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127832
19 Lu Y P , Huang H F , Gao X Z , et al . A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 369
20 George E P , Raabe D , Ritchie R O . High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
21 Yao H W , Qiao J W , Gao M C , et al . NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling [J]. Mater. Sci. Eng., 2016, A674: 203
22 Chen W , Tang Q H , Wang H , et al . Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy [J]. Mater. Sci. Technol., 2018, 34: 1309
23 Yurchenko N Y , Stepanov N D , Zherebtsov S V , et al . Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 0-1.5) high-entropy alloys [J]. Mater. Sci. Eng., 2017, A704: 82
24 Senkov O N , Jensen J K , Pilchak A L , et al . Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr [J]. Mater. Des., 2018, 139: 498
25 Zhang W R , Liaw P K , Zhang Y . Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
26 Butler T M , Chaput K J , Dietrich J R , et al . High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
27 Senkov O N , Senkova S V , Miracle D B , et al . Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system [J]. Mater. Sci. Eng., 2013, A565: 51
28 Senkov O N , Senkova S V , Woodward C , et al . Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis [J]. Acta Mater., 2013, 61: 1545
29 Long Y , Liang X B , Su K , et al . A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties [J]. J. Alloys Compd., 2019, 780: 607
30 Takeuchi A , Inoue A . Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
31 Chang C H , Titus M S , Yeh J W . Oxidation behavior between 700 and 1300oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20: 1700948
32 Senkov O N , Senkova S V , Woodward C . Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
33 Senkov O N , Woodward C , Miracle D B . Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
34 Wang W , Zhang Z T , Niu J Z , et al . Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
35 Senkov O N , Isheim D , Seidman D N , et al . Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
36 Huang H L , Wu Y , He J Y , et al . Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
37 Stepanov N D , Yurchenko N Y , Zherebtsov S V , et al . Aging behavior of the HfNbTaTiZr high entropy alloy [J]. Mater. Lett., 2018, 211: 87
38 Jiang H , Jiang L , Lu Y P , et al . Microstructure and mechanical properties of the W-Ni-Co system refractory high-entropy alloys [J]. Mater. Sci. Forum, 2015, 816: 324
39 Zhao S F , Yang G N , Ding H Y , et al . A quinary Ti-Zr-Hf-Be-Cu high entropy bulk metallic glass with a critical size of 12 mm [J]. Intermetallics, 2015, 61: 47
40 Zhao S F , Shao Y , Liu X , et al . Pseudo-quinary Ti20Zr20Hf20Be20-(Cu20 - x Ni x ) high entropy bulk metallic glasses with large glass forming ability [J]. Mater. Des., 2015, 87: 625
41 Han Z D , Luan H W , Liu X , et al . Microstructures and mechanical properties of Ti x NbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
42 Senkov O N , Scott J M , Senkova S V , et al . Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
43 Zhang Y , Yang X , Liaw P K . Alloy design and properties optimization of high-entropy alloys [J]. JOM, 2012, 64: 830
44 Senkov O N , Woodward C F . Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. Mater. Sci. Eng., 2011, A529: 311
45 Yang X , Zhang Y , Liaw P K . Microstructure and compressive properties of NbTiVTaAlx high entropy alloys [J]. Procedia Eng., 2012, 36: 292
46 Chen S Y , Yang X , Dahmen K A , et al . Microstructures and crackling noise of Al x NbTiMoV high entropy alloys [J]. Entropy, 2014, 16: 870
47 Stepanov N D , Shaysultanov D G , Salishchev G A , et al . Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy [J]. Mater. Lett., 2015, 142: 153
48 Fazakas É , Zadorozhnyy V , Varga L K , et al . Experimental and theoretical study of Ti20Zr20Hf20Nb20 X20 (X = V or Cr) refractory high-entropy alloys [J]. Int. J. Refract. Met. Hard Mater., 2014, 47: 131
49 Juan C C , Tsai M H , Tsai C W , et al . Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys [J]. Intermetallics, 2015, 62: 76
50 Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy [J]. Mater. Des., 2015, 81: 87
51 Han Z D , Chen N , Zhao S F , et al . Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys [J]. Intermetallics, 2017, 84: 153
52 Lin C M , Juan C C , Chang C H , et al . Effect of Al addition on mechanical properties and microstructure of refractory Al x HfNbTaTiZr alloys [J]. J. Alloys Compd., 2015, 624: 100
53 Stepanov N D , Yurchenko N Y , Skibin D V , et al . Structure and mechanical properties of the AlCr x NbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys [J]. J. Alloys Compd., 2015, 652: 266
54 Wu Y D , Cai Y H , Chen X H , et al . Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys [J]. Mater. Des., 2015, 83: 651
55 Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound [J]. J. Alloys Compd., 2016, 660: 197
56 Guo N N , Wang L , Luo L S , et al . Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite [J]. Intermetallics, 2016, 69: 74
57 Yao H W , Qiao J W , Gao M C , et al . MoNbTaV medium-entropy alloy [J]. Entropy, 2016, 18: 189
58 Juan C C , Tseng K K , Hsu W L , et al . Solution strengthening of ductile refractory HfMo x NbTaTiZr high-entropy alloys [J]. Mater. Lett., 2016, 175: 284
59 Maiti S , Steurer W . Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
60 Qiao D X , Jiang H , Chang X X , et al . Microstructure and mechanical properties of VTaTiMoAl x refractory high entropy alloys [J]. Mater. Sci. Forum, 2017, 898: 638
61 Stepanov N D , Yurchenko N Y , Panina E S , et al . Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy [J]. Mater. Lett., 2017, 188: 162
62 Zhang M N , Zhou X L , Li J H . Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy [J]. J. Mater. Eng. Perform., 2017, 26: 3657
63 Waseem O A , Lee J , Lee H M , et al . The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy Ti x WTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
64 Liu Y , Zhang Y , Zhang H , et al . Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Si x high-entropy composites [J]. J. Alloys Compd., 2017, 694: 869
65 Yao H W , Qiao J W , Hawk J A , et al . Mechanical properties of refractory high-entropy alloys: Eexperiments and modeling [J]. J. Alloys Compd., 2017, 696: 1139
66 Poulia A , Georgatis E , Mathiou C , et al . Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element [J]. Mater. Chem. Phys., 2018, 210: 251
67 Zhang Y , Liu Y , Li Y X , et al . Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite [J]. Mater. Lett., 2016, 174: 82
68 Zhang Y , Liu Y , Li Y X , et al . Microstructure and mechanical properties of a new refractory HfNbSi0.5TiVZr high entropy alloy [J]. Mater. Sci. Forum, 2016, 849: 76
69 Huang T D , Wu S Y , Jiang H , et al . Effect of Ti content on microstructure and properties of Ti x ZrVNb refractory high-entropy alloys [J]. Int. J. Miner., Metall. Mater., 2020, 27: 1318
70 Pang J Y , Zhang H W , Zhang L , et al . Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength [J]. Mater. Lett., 2021, 290: 129428
71 Chen Y W , Li Y K , Cheng X W , et al . The microstructure and mechanical properties of refractory high-entropy alloys with high plasticity [J]. Materials (Basel), 2018, 11: 208
72 Chen Y W , Xu Z Q , Wang M , et al . A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties [J]. Mater. Sci. Eng., 2020, A792: 139774
73 Wu Y D , Cai Y H , Wang T , et al . A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
74 Lilensten L , Couzinié J P , Bourgon J , et al . Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity [J]. Mater. Res. Lett., 2017, 5: 110
75 Wei S L , Kim S J , Kang J Y , et al . Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility [J]. Nat. Mater., 2020, 19: 1175
76 Senkov O N , Semiatin S L . Microstructure and properties of a refractory high-entropy alloy after cold working [J]. J. Alloys Compd., 2015, 649: 1110
77 Sheikh S , Shafeie S , Hu Q , et al . Alloy design for intrinsically ductile refractory high-entropy alloys [J]. J. Appl. Phys., 2016, 120: 164902
78 Pan J Y , Dai T , Lu T , et al . Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering [J]. Mater. Sci. Eng., 2018, A738: 362
79 Juan C C , Tsai M H , Tsai C W , et al . Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
80 Lu Z P , Lei Z F , Huang H L , et al . Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
80 吕昭平, 雷智锋, 黄海龙 等 . 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
81 Lei Z F , Liu X J , Wu Y , et al . Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
82 Chen Y W , Li Y K , Cheng X W , et al . Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5O x (x  =  0.05, 0.1, 0.2) high-entropy alloys [J]. Mater. Lett., 2018, 228: 145
83 Lu Z P , Jiang S H , He J Y , et al . Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52: 1183
83 吕昭平, 蒋虽合, 何骏阳 等 . 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52: 1183
84 Fu A , Guo W M , Liu B , et al . A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties [J]. J. Alloys Compd., 2020, 815: 152466
85 Senkov O N , Couzinie J P , Rao S I , et al . Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 [J]. Materialia, 2020, 9: 100627
86 Yang C , Aoyagi K , Bian H K , et al . Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr [J]. Mater. Lett., 2019, 254: 46
87 Wei S Z , Xu L J . Review on research progress of steel and iron wear-resistant materials [J]. Acta Metall. Sin., 2020, 56: 523
87 魏世忠, 徐流杰 . 钢铁耐磨材料研究进展 [J]. 金属学报, 2020, 56: 523
88 Bleck W , Guo X F , Ma Y . The TRIP effect and its application in cold formable sheet steels [J]. Steel Res. Int., 2017, 88: 1700218
89 Yu Q , Chen Y J , Fang Y . Heterogeneity in chemical distribution and its impact in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 393
89 余 倩, 陈雨洁, 方 研 . 高熵合金中的元素分布规律及其作用 [J]. 金属学报, 2021, 57: 393
90 Herrera C , Ponge D , Raabe D . Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
91 Sun F , Zhang J Y , Marteleur M , et al . Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
92 Wu Y , Xiao Y H , Chen G L , et al . Bulk metallic glass composites with transformation-mediated work-hardening and ductility [J]. Adv. Mater., 2010, 22: 2770
93 Senkov O N , Scott J M , Senkova S V , et al . Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
94 Chen H , Kauffmann A , Gorr B , et al . Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al [J]. J. Alloys Compd., 2016, 661: 206
95 Chen H , Kauffmann A , Laube S , et al . Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metall. Mater. Trans., 2018, 49A: 772
96 Chokshi A H . High temperature deformation in fine grained high entropy alloys [J]. Mater. Chem. Phys., 2018, 210: 152
97 Hadraba H , Chlup Z , Dlouhy A , et al . Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy [J]. Mater. Sci. Eng., 2017, A689: 252
98 He J Y , Liu W H , Wang H , et al . Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
99 He J Y , Wang H , Wu Y , et al . High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy [J]. Mater. Sci. Eng., 2017, A686: 34
100 Yang Y , He Q F . Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
100 杨 勇, 赫全锋 . 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
101 Zong L , Xu L J , Luo C Y , et al . Refractory high-entropy alloys: A review of preparation methods and properties [J]. Chin. J. Eng., 2021, 43: 1459
101 宗 乐, 徐流杰, 罗春阳 等 . 难熔高熵合金: 制备方法与性能综述 [J]. 工程科学学报, 2021, 43: 1459
102 Lv S S , Zu Y F , Chen G Q , et al . A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness [J]. Mater. Sci. Eng., 2020, A795: 140035
103 He J Y , Wang H , Huang H L , et al . A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
104 Niu S Z , Kou H C , Guo T , et al . Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy [J]. Mater. Sci. Eng., 2016, A671: 82
105 He F , Wang Z J , Niu S Z , et al . Strengthening the CoCrFeNi-Nb0.25 high entropy alloy by FCC precipitate [J]. J. Alloys Compd., 2016, 667: 53
106 Ding J , Wang Z J . Local chemical order in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 413
106 丁 俊, 王章洁 . 高熵合金中的局域化学有序 [J]. 金属学报, 2021, 57: 413
107 Liu W H , Wu Y , He J Y , et al . Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
108 Wu D , Zhang J Y , Huang J C , et al . Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals [J]. Scr. Mater., 2013, 68: 118
109 Otto F , Dlouhý A , Somsen C , et al . The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
110 Wang Z W , Baker I , Cai Z H , et al . The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
111 Stepanov N D , Shaysultanov D G , Chernichenko R S , et al . Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. J. Alloys Compd., 2017, 693: 394
112 Lu Y P , Dong Y , Guo S , et al . A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
113 Gao X Z , Lu Y P , Zhang B , et al . Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
114 Jiang L , Lu Y P , Wu W , et al . Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions [J]. J. Mater. Sci. Technol., 2016, 32: 245
115 Rogal Ł , Kalita D , Litynska-Dobrzynska L . CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3 [J]. Intermetallics, 2017, 86: 104
116 Chen S T , Tang W Y , Kuo Y F , et al . Microstructure and properties of age-hardenable Al x CrFe1.5MnNi0.5 alloys [J]. Mater. Sci. Eng., 2010, A527: 5818
117 Gludovatz B , Hohenwarter A , Catoor D , et al . A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
118 Deng Y , Tasan C C , Pradeep K G , et al . Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
119 Gludovatz B , Hohenwarter A , Thurston K V S , et al . Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
120 Li Z M , Pradeep K G , Deng Y , et al . Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
121 Li Z M , Körmann F , Grabowski B , et al . Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity [J]. Acta Mater., 2017, 136: 262
122 Wang H W , He Z F , Jia N . Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
122 王洪伟, 何竹风, 贾 楠 . 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
123 Kang B , Lee J , Ryu H J , et al . Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process [J]. Mater. Sci. Eng., 2018, A712: 616
124 Schuh B , Völker B , Todt J , et al . Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties [J]. Acta Mater., 2018, 142: 201
125 Guo Z M , Zhang A J , Han J S , et al . Effect of Si additions on microstructure and mechanical properties of refractory NbTaWMo high-entropy alloys [J]. J. Mater. Sci., 2019, 54: 5844
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.