|
|
面外拘束效应对单边缺口拉伸试样断裂韧性的影响 |
李一哲, 龚宝明( ), 刘秀国, 王东坡, 邓彩艳 |
天津大学材料科学与工程学院天津市现代连接技术重点实验室 天津 300354 |
|
Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens |
Yizhe LI, Baoming GONG( ), Xiuguo LIU, Dongpo WANG, Caiyan DENG |
Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
Yizhe LI,
Baoming GONG,
Xiuguo LIU,
Dongpo WANG,
Caiyan DENG.
Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. Acta Metall Sin, 2018, 54(12): 1785-1791.
[1] | British Standard Institution.Guide to methods for assessing the acceptability of flaws in metallic structures[S]. London: British Standard Institution, 2007 | [2] | Paredes M, Ruggieri C.Further results in J and CTOD estimation procedures for SE(T) fracture specimens- Part II: Weld centerline cracks[J]. Eng. Fract. Mech., 2012, 89: 24 | [3] | Chen Y, Lambert S.Analysis of ductile tearing of pipeline-steel in single edge notch tension specimens[J]. Int. J. Fract., 2003, 124: 179 | [4] | Tang H, Macia M, Minnaar K, et al.Development of the SENT test for strain-based design of welded pipelines [A]. The 8th International Pipeline Conference[C]. Calgary, Alberta, Canada: American Society of Mechanical Engineers, 2010: 303 | [5] | Pisarski H G.Determination of pipe girth weld fracture toughness using SENT specimens [A]. The 8th International Pipeline Conference[C]. Calgary, Alberta, Canada: American Society of Mechanical Engineers, 2010: 217 | [6] | API 579. Recommended practice 579, for fitness-for-service[S]. Washington, DC: American Petroleum Institute, 2000 | [7] | BSI 7910. Guide on methods for assessing the acceptability of flaws in metallic structuresSI 7910. Guide on methods for assessing the acceptability of flaws in metallic structures[S]. London: British Standards Institution, 1999 | [8] | Wallin K.The size effect in KIC results[J]. Eng. Fract. Mech., 1985, 22: 149 | [9] | Yang J, Wang G Z, Xuan F Z, et al.Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain[J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 504 | [10] | Hebel J, Hohe J, Friedmann V, et al.Experimental and numerical analysis of in-plane and out-of-plane crack tip constraint characterization by secondary fracture parameters[J]. Int. J. Fract., 2007, 146: 173 | [11] | Sarzosa D F B, Ruggieri C. A numerical investigation of constraint effects in circumferentially cracked pipes and fracture specimens including ductile tearing [J]. Int. J. Press. Vessels Pip., 2014, 120-121: 1 | [12] | DNV-OS-F101. Submarine pipeline systems text version[S]. Norway: Det Norske Veritas, 2010 | [13] | BSI 8571 Method of test for determination of fracture toughness in metallic materials using single edge notched tension (SENT) specimens[S]. London: British Standards Institution, 2014 | [14] | Lu K, Meshii T.Three-dimensional T-stresses for three-point-bend specimens with large thickness variation[J]. Eng. Fract. Mech., 2014, 116: 197 | [15] | Shlyannikov V N, Boychenko N V, Tumanov A V, et al.The elastic and plastic constraint parameters for three-dimensional problems[J]. Eng. Fract. Mech., 2014, 127: 83 | [16] | Meshii T, Lu K, Fujiwara Y.Extended investigation of the test specimen thickness (TST) effect on the fracture toughness (Jc) of a material in the ductile-to-brittle transition temperature region as a difference in the crack tip constraint—What is the loss of constraint in the TST effects on Jc ?[J]. Eng. Fract. Mech., 2015, 135: 286 | [17] | American Society for Testing and Materials. ASTM E1820-17 Standard test method for measurement of fracture toughness[S]. America: American Society for Testing and Materials, 2013 | [18] | Shen G W, Tyson W R, Gianetto J A, et al.Effect of side grooves on compliance, J-integral and constraint of a clamped SE(T) specimen [A]. ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference[C]. Bellevue, Washington, USA: Pressure Vessels and Piping Division, 2010: 81 | [19] | Li Y Z, Gong B M, Corrado M, et al. Experimental investigation of out-of-plane constraint effect on fracture toughness of the SE(T) specimens [J]. Int. J. Mech. Sci., 2017, 128-129: 644 | [20] | Verstraete M A, Hertelé S, Denys R M, et al.Evaluation and interpretation of ductile crack extension in SENT specimens using unloading compliance technique[J]. Eng. Fract. Mech., 2014, 115: 190 | [21] | Verstraete M A, Denys R M, Van Minnebruggen K, et al.Determination of CTOD resistance curves in side-grooved single-edge notched tensile specimens using full field deformation measurements[J]. Eng. Fract. Mech., 2013, 110: 12 | [22] | Moore P L, Pisarski H G.Validation of methods to determine CTOD from SENT specimens [A]. The 22nd International Ocean and Polar Engineering Conference[C]. Rodos Palace Hotel, Rhodes, Greece: ISOPE, 2012: 577 | [23] | Zhu X K, Zelenak P, McGaughy T. Comparative study of CTOD-resistance curve test methods for SENT specimens[J]. Eng. Fract. Mech., 2017, 172: 17 | [24] | Meshii T, Lu K, Takamura R.A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region[J]. Eng. Fract. Mech., 2013, 104: 184 | [25] | Bansal S, Nath S K, Ghosh P K, et al.Stretched zone width and blunting line equation for determination of initiation fracture toughness in low carbon highly ductile steels[J]. Int. J. Fract., 2009, 159: 43 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|