|
|
不同B含量Mo-Si-B合金的高温抗氧化性能 |
李斌1,2, 林小辉2, 李瑞1, 张国君1( ), 李来平2, 张平祥2 |
1 西安理工大学材料科学与工程学院 西安 710048 2 西北有色金属研究院 西安 710016 |
|
High-Temperature Oxidation Resistance of Mo-Si-B Alloys with Different B Contents |
Bin LI1,2, Xiaohui LIN2, Rui LI1, Guojun ZHANG1( ), Laiping LI2, Pingxiang ZHANG2 |
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China 2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China |
引用本文:
李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
Bin LI,
Xiaohui LIN,
Rui LI,
Guojun ZHANG,
Laiping LI,
Pingxiang ZHANG.
High-Temperature Oxidation Resistance of Mo-Si-B Alloys with Different B Contents[J]. Acta Metall Sin, 2018, 54(12): 1792-1800.
[1] | Akinc M, Meyer M K, Kramer M J, et al.Boron-doped molybdenum silicides for structural applications[J]. Mater. Sci. Eng., 1999, A261: 16 | [2] | Kruzic J J, Schneibel J H, Ritchie R O.Fracture and fatigue resistance of Mo-Si-B alloys for ultra-high-temperature structural supplications[J]. Scr. Mater., 2004, 50: 459 | [3] | Yu J L, Li Z K, Zheng X, et al.Superplasticity of Mo-9Si-8B-3Hf multiphase refractory alloy prepared by mechanical alloying and hot pressing sintering[J]. Acta Metall. Sin., 2011, 47: 317(喻吉良, 李中奎, 郑欣等. 机械合金化热压烧结Mo-Si-B多相难熔合金的超塑性[J]. 金属学报, 2011, 47: 317) | [4] | Alur A P, Chollacoop N, Kumar K S.High-temperature compression behavior of Mo-Si-B alloys[J]. Acta Mater., 2004, 52: 5571 | [5] | Pan K M, Zhang L Q, Wei S Z, et al.Study on the preparation process of T2 alloy in the Mo-Si-B system[J]. Acta Metall. Sin., 2015, 51: 1377(潘昆明, 张来启, 魏世忠等. Mo-Si-B三元系中T2相合金的制备工艺研究[J]. 金属学报, 2015, 51: 1377) | [6] | Derkowitz-Mattuck J B, Dils R R. High-temperature oxidation II: Molybdenum silicides[J]. J. Electrochem. Soc., 1965, 112: 583 | [7] | Bartlett R W, McCamont J W, Gage P R. Structure and chemistry of oxide films thermally grown on molybdenum silicides[J]. J. Am. Ceram. Soc., 1965, 48: 551 | [8] | Meyer M K, Akinc M.Oxidation behavior of boron-modified Mo5Si3 at 800~1300 ℃[J]. J. Am. Ceram. Soc., 1996, 79: 938 | [9] | Meyer M, Kramer M, Akinc M.Boron-doped molybdenum silicides[J]. Adv. Mater., 1996, 8: 85 | [10] | Supatarawanich V, Johnson D R, Liu C T.Oxidation behavior of multiphase Mo-Si-B alloys[J]. Intermetallics, 2004, 12: 721 | [11] | Wang F, Shan A D, Dong X P, et al.Microstructure and Oxidation behavior of directionally solidified Mo-Mo5SiB2(T2)-Mo3Si alloys[J]. J. Alloys Compd., 2008, 462: 436 | [12] | Meyer M K, Thom A J, Akinc M.Oxide scale formation and isothermal oxidation behavior of Mo-Si-B intermetallics at 600~1000 ℃[J]. Intermetallics, 1999, 7: 153 | [13] | Mendiratta M G, Parthasarathy T A, Dimiduk D M.Oxidation behavior of a Mo-Mo3Si- Mo5SiB2(T2) three phase system[J]. Intermetallics, 2002, 10: 225 | [14] | Thom A J, Kramer M J, Mandal P, et al.Wet air and simulated combusion gas exposures of Mo-Si-B alloys[J]. Scr. Mater., 2005, 53: 915 | [15] | Perepezko J H, Sakidja R.Oxidation resistant coatings for ultrahigh temperature refractory Mo-base alloys[J]. Adv. Eng. Mater., 2009, 11: 892 | [16] | Majumdar S, D?nges B, Gorr B, et al.Mechanisms of oxide scale formation on yttrium-alloyed Mo-Si-B containing fine-grained microstructure[J]. Corros. Sci., 2015, 90: 76 | [17] | Burk S, Gorr B, Christ H J.High temperature oxidation of Mo-Si-B alloys: Effect of low and very low oxygen partial pressures[J]. Acta Mater., 2010, 58: 6154 | [18] | Nowotny H, Dimakopoulou E, Kudielka H.Untersuchungen in den dreistoffsystemen: Molybd?n-Silizium-Bor, Wolfram-Silizium-Bor und in dem system: VSi2-TaSi2[J]. Monatsh. Chem., 1957, 88: 180 | [19] | Vance E R, Hayward P J, Hamon R F. Volatile losses from sphene glass-ceramic and borosilicate glass melts [J]. J. Am. Ceram. Soc., 1988, 71: C-318 | [20] | Parthasarathy T A, Mendiratta M G, Dimikuk D M.Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)-Mo3Si alloys[J]. Acta Mater., 2002, 50: 1857 | [21] | Thom A J, Summers E, Akinc M.Oxidation behavior of extruded Mo3Si3BX-MoSi2-MoB intermetallics from 600-1600 ℃[J]. Intermetallics, 2002, 10: 555 | [22] | Rioult F A, Imhoff S D, Sakidja R, et al.Transient oxidation of Mo-Si-B alloys: Effect of the microstructure size scale[J]. Acta Mater., 2009, 57: 4600 | [23] | Zhang G J, Kou H, Dang Q, et al.Microstructure and oxidation resistance behavior of lanthanum oxide-doped Mo-12Si-8.5B alloys[J]. Int. J. Refract. Met. Hard Mater., 2012, 30: 6 | [24] | Doremus R H.Glass Science[M]. New York: Wiley>, 1973: 105 | [25] | Morin E I, Wu J S, Stebbins J F.Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: The roles of fictive temperature and boron content[J]. Appl. Phys., 2014, 116A: 479 | [26] | Yoshimi K, Nakatani S, Suda T, et al.Oxidation behavior of Mo5SiB2-based alloy at elevated temperature[J]. Intermetallics, 2002, 10: 407 | [27] | Nomura N, Suzuki T, Yoshimi K, et al.Microstructure and oxidation resistance of a plasma sprayed Mo-Si-B multiphase alloy coating[J]. Intermetallics, 2003, 11: 735 | [28] | Wang J, Li B, Ren S, et al.Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB2 addition at 1300 ℃[J]. J. Mater. Sci. Technol., 2018, 34: 635 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|