Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1792-1800    DOI: 10.11900/0412.1961.2018.00015
  本期目录 | 过刊浏览 |
不同B含量Mo-Si-B合金的高温抗氧化性能
李斌1,2, 林小辉2, 李瑞1, 张国君1(), 李来平2, 张平祥2
1 西安理工大学材料科学与工程学院 西安 710048
2 西北有色金属研究院 西安 710016
High-Temperature Oxidation Resistance of Mo-Si-B Alloys with Different B Contents
Bin LI1,2, Xiaohui LIN2, Rui LI1, Guojun ZHANG1(), Laiping LI2, Pingxiang ZHANG2
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2 Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
引用本文:

李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
Bin LI, Xiaohui LIN, Rui LI, Guojun ZHANG, Laiping LI, Pingxiang ZHANG. High-Temperature Oxidation Resistance of Mo-Si-B Alloys with Different B Contents[J]. Acta Metall Sin, 2018, 54(12): 1792-1800.

全文: PDF(7802 KB)   HTML
摘要: 

测试了不同B含量(5%~17%,原子分数)的Mo-Si-B合金在1000~1300 ℃的抗氧化性能,并对其微观组织及抗氧化机制进行了分析。结果表明,Mo-Si-B合金的氧化行为受B含量和氧化温度共同影响,B元素主要通过改善表面玻璃相流动性和调节合金内α-Mo、Mo3Si和Mo5SiB2三相的体积分数和微观组织来影响氧化膜的形成和生长过程。B含量的增加虽然有助于提升玻璃相在低温下的流动性而促使表面氧化膜快速成形和均匀覆盖,但在高温下氧化膜充足的流动性却不利于合金抗氧化性能的提升。在低温时Mo-Si-B合金的抗氧化性能受控于B含量,而在高温时抗氧化性能取决于α-Mo相含量。对于B含量较高的细晶Mo-12Si-17B合金,由于含有较多的Mo5SiB2相和较少的α-Mo相,在1000~1300 ℃整个氧化温度区间内,表面均能形成一层完整、致密的氧化膜。金属间化合物弥散分布的细晶结构可以确保Mo-Si-B合金表现出优异的抗氧化性能。

关键词 Mo-Si-B合金B含量微观组织抗氧化性能    
Abstract

The oxidation behaviors of the Mo-Si-B alloy with B content in the range of 5% to 17% (atomic fraction) were experimentally investigated at temperatures ranging from 1000 ℃ to 1300 ℃. The microstructures and antioxidant mechanisms were also analyzed. Results showed that the oxidation behaviors were affected by both B content and oxidation temperature. The formation and growth process of oxidation film were mainly influenced by the B element which could improve the fluidity of surface glass phase and adjust the volume fraction and microstructure of α-Mo, Mo3Si and Mo5SiB2. The Mo-Si-B alloy with the B content increasing was favourable for quick forming and uniform covering by improving the mobility of the glass, but which decreased the oxidation resistance due to the sufficient liquidity of the oxidation film at high temperature. The oxidation resistance of the Mo-Si-B alloy is controlled by B content at low temperature and α-Mo content at high temperature, respectively. A large quantity of Mo5SiB2 phase and a small quantity of α-Mo phase existed in the high B content of Mo-12Si-17B alloy, which could promote the oxide layer to form rapidly but also cover uniformly under the temperature range of 1000~1300 ℃. The discussion illustrates that the fine-grained microstructure combining with the distributed intermetallics is a specific role to ensure the excellent oxidation resistance of Mo-Si-B alloy.

Key wordsMo-Si-B alloy    B content    microstructure    oxidation resistance
收稿日期: 2018-01-10     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目Nos.51701162、51674196,中国博士后科学基金项目No.2016M602885,西安理工大学优博创新基金项目No.310-252071705和陕西省博士后科研项目No.2016BSHEDZZ07
作者简介:

作者简介 李 斌,男,1983年生,博士

图1  1600 ℃下Mo-Si-B合金Mo富集区域等温截面相图[18],3种实验合金的成分选择如图中黑点所示
图2  不同B含量Mo-Si-B合金的XRD谱
Alloy fα-Mo fMo3Si fMo5SiB2 fLa2O3
Mo-12Si-5B 49.2 32.4 17.1 1.3
Mo-12Si-8.5B 43.7 25.3 29.8 1.2
Mo-12Si-17B 24.2 11.4 63.2 1.2
表1  不同B含量Mo-Si-B合金内各相的体积分数
图3  不同B含量Mo-Si-B 合金的TEM像和SAED花样
图4  不同B含量Mo-Si-B合金的热失重曲线
图5  不同B含量Mo-Si-B合金在不同温度氧化后的宏观照片
图6  Mo-12Si-8.5B合金在1000 ℃氧化10 h后表面氧化膜的横截面形貌、EDS线扫描及XRD谱
图7  不同温度氧化10 h后Mo-12Si-8.5B合金氧化膜截面形貌的SEM像
图8  在1000 ℃下氧化不同时间后Mo-12Si-8.5B合金氧化膜截面形貌的SEM像
图9  1200 ℃氧化10 h后不同B含量Mo-Si-B合金的氧化膜截面形貌的SEM像
[1] Akinc M, Meyer M K, Kramer M J, et al.Boron-doped molybdenum silicides for structural applications[J]. Mater. Sci. Eng., 1999, A261: 16
[2] Kruzic J J, Schneibel J H, Ritchie R O.Fracture and fatigue resistance of Mo-Si-B alloys for ultra-high-temperature structural supplications[J]. Scr. Mater., 2004, 50: 459
[3] Yu J L, Li Z K, Zheng X, et al.Superplasticity of Mo-9Si-8B-3Hf multiphase refractory alloy prepared by mechanical alloying and hot pressing sintering[J]. Acta Metall. Sin., 2011, 47: 317(喻吉良, 李中奎, 郑欣等. 机械合金化热压烧结Mo-Si-B多相难熔合金的超塑性[J]. 金属学报, 2011, 47: 317)
[4] Alur A P, Chollacoop N, Kumar K S.High-temperature compression behavior of Mo-Si-B alloys[J]. Acta Mater., 2004, 52: 5571
[5] Pan K M, Zhang L Q, Wei S Z, et al.Study on the preparation process of T2 alloy in the Mo-Si-B system[J]. Acta Metall. Sin., 2015, 51: 1377(潘昆明, 张来启, 魏世忠等. Mo-Si-B三元系中T2相合金的制备工艺研究[J]. 金属学报, 2015, 51: 1377)
[6] Derkowitz-Mattuck J B, Dils R R. High-temperature oxidation II: Molybdenum silicides[J]. J. Electrochem. Soc., 1965, 112: 583
[7] Bartlett R W, McCamont J W, Gage P R. Structure and chemistry of oxide films thermally grown on molybdenum silicides[J]. J. Am. Ceram. Soc., 1965, 48: 551
[8] Meyer M K, Akinc M.Oxidation behavior of boron-modified Mo5Si3 at 800~1300 ℃[J]. J. Am. Ceram. Soc., 1996, 79: 938
[9] Meyer M, Kramer M, Akinc M.Boron-doped molybdenum silicides[J]. Adv. Mater., 1996, 8: 85
[10] Supatarawanich V, Johnson D R, Liu C T.Oxidation behavior of multiphase Mo-Si-B alloys[J]. Intermetallics, 2004, 12: 721
[11] Wang F, Shan A D, Dong X P, et al.Microstructure and Oxidation behavior of directionally solidified Mo-Mo5SiB2(T2)-Mo3Si alloys[J]. J. Alloys Compd., 2008, 462: 436
[12] Meyer M K, Thom A J, Akinc M.Oxide scale formation and isothermal oxidation behavior of Mo-Si-B intermetallics at 600~1000 ℃[J]. Intermetallics, 1999, 7: 153
[13] Mendiratta M G, Parthasarathy T A, Dimiduk D M.Oxidation behavior of a Mo-Mo3Si- Mo5SiB2(T2) three phase system[J]. Intermetallics, 2002, 10: 225
[14] Thom A J, Kramer M J, Mandal P, et al.Wet air and simulated combusion gas exposures of Mo-Si-B alloys[J]. Scr. Mater., 2005, 53: 915
[15] Perepezko J H, Sakidja R.Oxidation resistant coatings for ultrahigh temperature refractory Mo-base alloys[J]. Adv. Eng. Mater., 2009, 11: 892
[16] Majumdar S, D?nges B, Gorr B, et al.Mechanisms of oxide scale formation on yttrium-alloyed Mo-Si-B containing fine-grained microstructure[J]. Corros. Sci., 2015, 90: 76
[17] Burk S, Gorr B, Christ H J.High temperature oxidation of Mo-Si-B alloys: Effect of low and very low oxygen partial pressures[J]. Acta Mater., 2010, 58: 6154
[18] Nowotny H, Dimakopoulou E, Kudielka H.Untersuchungen in den dreistoffsystemen: Molybd?n-Silizium-Bor, Wolfram-Silizium-Bor und in dem system: VSi2-TaSi2[J]. Monatsh. Chem., 1957, 88: 180
[19] Vance E R, Hayward P J, Hamon R F. Volatile losses from sphene glass-ceramic and borosilicate glass melts [J]. J. Am. Ceram. Soc., 1988, 71: C-318
[20] Parthasarathy T A, Mendiratta M G, Dimikuk D M.Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)-Mo3Si alloys[J]. Acta Mater., 2002, 50: 1857
[21] Thom A J, Summers E, Akinc M.Oxidation behavior of extruded Mo3Si3BX-MoSi2-MoB intermetallics from 600-1600 ℃[J]. Intermetallics, 2002, 10: 555
[22] Rioult F A, Imhoff S D, Sakidja R, et al.Transient oxidation of Mo-Si-B alloys: Effect of the microstructure size scale[J]. Acta Mater., 2009, 57: 4600
[23] Zhang G J, Kou H, Dang Q, et al.Microstructure and oxidation resistance behavior of lanthanum oxide-doped Mo-12Si-8.5B alloys[J]. Int. J. Refract. Met. Hard Mater., 2012, 30: 6
[24] Doremus R H.Glass Science[M]. New York: Wiley>, 1973: 105
[25] Morin E I, Wu J S, Stebbins J F.Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: The roles of fictive temperature and boron content[J]. Appl. Phys., 2014, 116A: 479
[26] Yoshimi K, Nakatani S, Suda T, et al.Oxidation behavior of Mo5SiB2-based alloy at elevated temperature[J]. Intermetallics, 2002, 10: 407
[27] Nomura N, Suzuki T, Yoshimi K, et al.Microstructure and oxidation resistance of a plasma sprayed Mo-Si-B multiphase alloy coating[J]. Intermetallics, 2003, 11: 735
[28] Wang J, Li B, Ren S, et al.Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB2 addition at 1300 ℃[J]. J. Mater. Sci. Technol., 2018, 34: 635
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[14] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.