Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1258-1266    DOI: 10.3724/SP.J.1037.2010.00236
  论文 本期目录 | 过刊浏览 |
镍基合金焊接过渡区微观结构及应力腐蚀行为研究
侯娟1,彭群家2,庄子哲雄2,王俭秋1,柯伟1,韩恩厚1
1. 中国科学院金属研究所 腐蚀与防护国家重点实验室, 沈阳 110016
2. 日本东北大学 断裂与可靠性研究中心, 仙台 980--8579
STUDY OF MICROSTRUCTURE AND STRESS CORROSION CRACKING BEHAVIOR IN WELDING TRANSITION ZONE OF Ni–BASED ALLOYS
HOU Juan 1, PENG Qunjia 2, SHOJI Testuo 2, WANG Jianqiu 1, KE Wei 1, HAN Enhou1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,
Shenyang 110016
2. Fracture and Reliability Research Institute, Tohoku University, Sendai 980–8579, Japan
引用本文:

侯娟 彭群家 庄子哲雄 王俭秋 柯伟 韩恩厚. 镍基合金焊接过渡区微观结构及应力腐蚀行为研究[J]. 金属学报, 2010, 46(10): 1258-1266.
, , , , , . STUDY OF MICROSTRUCTURE AND STRESS CORROSION CRACKING BEHAVIOR IN WELDING TRANSITION ZONE OF Ni–BASED ALLOYS[J]. Acta Metall Sin, 2010, 46(10): 1258-1266.

全文: PDF(3469 KB)  
摘要: 利用微观分析手段深入分析了镍基合金690-52同种金属焊接和镍基182合金-A533B低合金钢异种金属焊接的焊接过渡区微观结构, 定量测量了同种金属焊接热影响区(HAZ)残余应变分布, 用带缝隙的弯曲横梁样品模拟了异种金属焊接过渡区在高温含氧水中的应力腐蚀开裂(SCC)行为. 结果表明, 同种金属焊接过渡区的HAZ具有残余应变峰值、敏感的晶界微观结构, 因而导致最高的SCC敏感性; 异种金属焊接过渡区具有复杂的微观结构和成分分布, 典型特征是靠近熔接线(FB)的熔合区(FZ)内形成平行于FB的type-II和连接FB与type-II的type-I晶界,type-II具有高的SCC敏感性和裂纹扩展速率, type-I引导裂纹向FB扩展, 裂纹到达FB后发生点蚀钝化停止扩展, FB起阻碍裂纹进一步向低合金钢扩展的作用.
关键词 镍基合金 同种/异种金属焊接 微观结构 残余应变 应力腐蚀开裂    
Abstract:Welding technique is generally used in nuclear power plant for manufacturing and machining important components such as steam generator. The similar metal weld and dissimilar metal weld were commonly involved to connect and fixup tubings in steam generators. However, in recent years large amounts of cracking accidents have been observed in the welded joints. A concern has been raised about the integrity and reliability in the joint transition zone due to the high susceptibility of heat affected zone (HAZ) and fusion zone (FZ) to stress corrosion cracking (SCC). In this study, the similar metal and dissimilar metal joints were investigated and compared, focusing on the correlation between microstructure, residual strain and SCC behavior. The microstructures of transition zone in Ni–based Alloys 690 and 52 similar metal joint and Alloys 182 and A533B low alloy steel dissimilar metal joint were investigated comprehensively by SEM, EBSD, TEM. The residual strain distribution in the HAZ of 690–52 similar metal joint was quantitatively measured. The SCC behavior of 182–A533B dissimilar metal joint in high temperature oxygenated water were simulated by creviced bent beam specimen. The HAZ in the similar joint exhibits higher residual strain, sensitive microstructure and high susceptibility to SCC, therefoe, the HAZ region deserve more attention during the inspection and examination of components. The FZ othe dssimilar metal joint exhibits complicated microstructure and chemical composition. The type–II which parallels the fusion boundary (FB) and type–I linking the FB and type–II was typical in the FZ of the dissimilar weld. The SCC susceptibility and cracking growth rate are higher at type–II boundary in the FZ. The role of type–I boundary is to lead the crack growth to the FB. After reaching the FB, the crack growth is blunted by pitting. The FB plays a barrier role to the crack growth in the low alloy steel. The FZ in dissimilar metal joint is weak and high susceptible to SCC.
Key wordsNi–based alloy    similar/dissimilar metal weld    microstructure    residual strain    stress corrosion cracking
收稿日期: 2010-05-18     
基金资助:

国家重点基础研究发展计划(973)G2006CB605000

作者简介: 侯娟, 女, 1983年生, 博士生
[1] Ding X S. Nucl Power Plants, 2003: 4; 11 (丁训慎. 核电站 2003: 4; 11) [2] Li B C, Dai B, Wang X Y. Modern Elec Power, 2004: 21; (李必成, 戴兵, 王先元. 现代电力, 2004: 21卷 02期) [3] Sireesha M, Albert S K, Shankar V, Sundaresan S. J Nucl Mater 2000: 279; 65 [4] Amzallag C, Boursier J M, Pages C, Gimond C. In: the 10th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, NACE, 2001 [5] Peng Q J, Shoji T, Yamauchi H, Takeda Y. Corros Sci 2007: 49; 2767 [6] Shoji T, Lu Z P, Yamazaki S. In: 14th international conference environmental degradation of materials in nuclear power systems, Viginia, USA, ANS, 2009: 23 [7] Yamazaki S, Lu Z P, Ito Y, Takeda Y, Shoji T. Corros Sci, 2008: 50; 835 [8] Scott P M, Combrade P. In: Proc of the 11th Int Symp Environmental Degradation Materials Nuclear Power systems-water reactors, ANS, 2003: 29 [9] Lu B T, Chen Z K, Lu J L, Patchett B M, Xu Z H. Electrochim Acta, 2005: 50; 1391 [10] Andrensen P L. In: NRC/EPRI Meeting, 2008 [11] Andrensen P L. In: NRC/EPRI Meeting, 2008. [12] Horn R M, Andrensen P L, Hickling J. In: 5th Int Symp on contribution of Materials Investigation to the resolution of Problems Encountered in Pressurized Water Reactors, Fontevraud, France, 2002 [13] Li G F, Congleton J. Corros Sci, 2000: 42; 1005 [14] Seifert H P, Ritter S, Shoji T, Peng Q J, Takeda Y, Lu Z P. J Nucl Mater 2008: 378; 197 [15] Peng Q J, Shoji T, Ritter S, Seifert H P. In: 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, TMS 2005: 589 [16] Nelson T W, Lippold J C, Mills M J. Weld J, 1999: 78; 329S [17] Nelson T W, Lippold J C, Mills M J. Weld J, 2000: 79; 267S [18] Wu Y, Patchett B M. In: 31st Metallurgist Conference of CIM Edmonton, Canada, 1992 [19] Kim J W, Lee K, Kim J S, Byun T S, J Nucl Mater, 2009: 384; 212 [20] Lee H T, Wu J L. Corros Sci, 2009: 51; 733 [21] Sagawa W, Aoki T, Itou T, Enomoto K, Hayashi E, Ishikawa T. Nucl Eng Des, 2009: 239;655 [22] Hou J, Shoji T, Lu Z P, Peng Q J, Wang J Q, Han E-H, Ke W. J Nucl Mater, 2010: 397; 109 [23] Wahab M A, Painter M J, Davies M H. J Mater Process Tech, 1998: 77; 233 [24] Murugan S, Kumar P V, Raj B, Bose M C. Int J Pres Ves Pip, 1998: 75; 891 [25] Lim Y S, Kim J S, Kim H P, Cho H D. J Nucl Mater, 2004: 335; 108 [26] Watanabe T. Res Mech, 1984: 11; 47 [27] Lin P, Palumbo G, Erb U, Aust K T. Scripta Metall Mater, 1995: 33; 1387 [28] Palumbo G, Erb U. Mrs Bulletin, 1999: 24; 27 [29] Gupta G, Ampornrat P, Ren X, Sridharan K, Allen TR, Was G S. J Nucl Mater, 2007: 361; 160 [30] Aust K T, Erb U, Palumbo G. Mater Sci Eng A, 1994: 176; 329 [31] Watanabe T, Tsurekawa S. Mater Sci Eng A, 2004: 387; 447 [32] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantschger K, Vincze A. J Power Sources, 1999: 78; 79 [33] Lehockey E M, Palumbo G. Mater Sci Eng A, 1997: 237; 168 [34] Lehockey E M, Palumbo G, Lin P. Scripta Mater, 1998: 39; 353 [35] Xia S. PhD Thesis, Shanghai University, 2007. (夏爽. 上海大学博士论文,2007.) [36] Pan Y, Adams B L, Olson T, Panayotou N. Acta Mater, 1996: 44; 4685 [37] Gertsman V Y, Tangri K, Valiev R Z, Acta Metall Mater, 1994: 42; 1785 [38] Gertsman V Y, Bruemmer S M. Acta Mater, 2001: 49; 1589 [39] Hou J, Wang J Q, Ke W, Han E-H. Mater Sci Eng A, 2009: 518; 19 [40] Brandon D G. Acta Mater, 1966: 14; 1479 [41] Palumbo G, Aust K T, Lehockey E M, Erb U, Lin P. Scripta Mater,1998: 38: 1685 [42] Nelson T W, Lippold J C, Mills M J. Sci Technol Weld Joi, 1998: 3; 249 [43] Angeliu T M, Andresen P L, Hall E, Sutliff J A, Sitzman S, Horn R M. In: Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1999
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[4] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[5] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[6] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[7] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[8] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[9] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[10] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[11] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[12] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[13] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[14] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[15] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.