|
|
Ag-CuO触点材料侵蚀过程的演化动力学及力学性能 |
马敏静1, 屈银虎1, 王哲1,2( ), 王军1, 杜丹1 |
1.西安工程大学 材料工程学院 西安 710048 2.西安交通大学 物理学院 西安 710049 |
|
Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials |
MA Minjing1, QU Yinhu1, WANG Zhe1,2( ), WANG Jun1, DU Dan1 |
1.School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China 2.School of Physics, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
Minjing MA,
Yinhu QU,
Zhe WANG,
Jun WANG,
Dan DU.
Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. Acta Metall Sin, 2022, 58(10): 1305-1315.
1 |
Lin Z J. Microstructure control and properties of Ag-SnO2 and Ag-Ni electrical contact materials [D]. Shenyang: Northeastern University, 2017
|
1 |
林智杰. Ag-SnO2和Ag-Ni电触头材料微结构调控与性能研究 [D]. 沈阳: 东北大学, 2017
|
2 |
He X Q, Fu H D, Zhang H T, et al. Machine learning aided rapid discovery of high performance silver alloy electrical contact materials [J]. Acta Metall. Sin., 2022, 58: 816
|
2 |
何兴群, 付华栋, 张洪涛 等. 机器学习辅助高性能银合金电接触材料的快速发现 [J]. 金属学报, 2022, 58: 816
doi: 10.11900/0412.1961.2021.00002
|
3 |
Han Y, Wang H S, Cao Y D, et al. Mechanical and electrical properties of Cu-W composites with micro-oriented structures [J]. Acta Metall. Sin., 2021, 57: 1009
doi: 10.11900/0412.1961.2020.00387
|
3 |
韩 颖, 王宏双, 曹云东 等. 微观定向结构Cu-W复合材料的力学与电学性能 [J]. 金属学报, 2021, 57: 1009
|
4 |
Wu C P, Yi D Q, Wang W, et al. Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 185
doi: 10.1016/S1003-6326(16)64105-5
|
5 |
Wang B J, Saka N, Rabinowicz E. Static gap erosion of Ag-CdO electrodes [J]. IEEE. Trans. Compon., Hybrids, Manuf. Technol., 1991, 14: 374
|
6 |
Li G J, Ma Y Y, Zhang X L, et al. Interface strengthening and fracture characteristics of the Ag-based contact materials reinforced with nanoporous SnO2 (Cu, CuO) phases [J]. Appl. Surf. Sci., 2021, 543: 148812
doi: 10.1016/j.apsusc.2020.148812
|
7 |
Chen S Y, Wang J, Yuan Z, et al. Microstructure and arc erosion behaviors of Ag-CuO contact material prepared by selective laser melting [J]. J. Alloys Compd., 2021, 860: 158494
doi: 10.1016/j.jallcom.2020.158494
|
8 |
Han X L, Wang Z, Li G J, et al. Interfacial thermal stress relief in Ag-SnO2 composites by in situ formation of CuO nanoparticles additive on SnO2 [J]. Ceram. Int., 2022, 48: 16638
doi: 10.1016/j.ceramint.2022.02.209
|
9 |
Tao Q Y, Zhou X L, Zhou Y H, et al. Contact resistance and arc erosion morphology of AgCuO electrical contact material [J]. Rare Met. Mater. Eng., 2015, 44: 1219
|
9 |
陶麒鹦, 周晓龙, 周允红 等. Ag-CuO电触头材料的接触电阻及电弧侵蚀形貌分析 [J]. 稀有金属材料与工程, 2015, 44: 1219
|
10 |
Wang Z, Wang Y P. Impact of convection-diffusion and flow-path interactions on the dynamic evolution of microstructure: Arc erosion behavior of Ag-SnO2 contact materials [J]. J. Alloys Compd., 2019, 774: 1046
doi: 10.1016/j.jallcom.2018.10.022
|
11 |
Zhang J F, Sun X J, Tong H, et al. Mechanism investigation on effects of glass composition on Ag/Si contact for crystalline silicon solar cells [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 6778
doi: 10.1007/s10854-020-05211-8
|
12 |
Liu S T, Sun Q Y, Wang J B, et al. Exploration of the influence mechanism of La doping on the arc erosion resistance of Ag/SnO2 contact materials by a laser-simulated arc [J]. J. Mater. Eng. Perform., 2021, 30: 7577
doi: 10.1007/s11665-021-05966-z
|
13 |
Wu Q, Xu G F, Yuan M, et al. Influence of operation numbers on arc erosion of Ag/CuO electrical contact material [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2497
doi: 10.1007/s10854-019-02786-9
|
14 |
Zhou X, Cui X L, Chen M, et al. Evaporation erosion of contacts under static arc by gas dynamics and molten pool simulation [J]. IEEE. Trans. Plasma Sci., 2015, 43: 4149
|
15 |
Wang Y L, Liang S H, Li Z B. Experiment and simulation analysis of surface structure for CuW contact after arc erosion [J]. Mater. Sci. Technol., 2015, 31: 243
doi: 10.1179/1743284714Y.0000000518
|
16 |
Wang J, Kang Y Q, Wang C. Microstructure and vacuum arc characteristics of CuO skeletal structure Ag-CuO contact materials [J]. J. Alloys Compd., 2016, 686: 702
doi: 10.1016/j.jallcom.2016.05.271
|
17 |
dos Santos J F, Staron P, Fischer T, et al. Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation [J]. Acta Mater., 2018, 148: 163
doi: 10.1016/j.actamat.2018.01.020
|
18 |
Wang Z, Wang X, Tong Y G, et al. Impact of structure and flow-path on in situ synthesis of AlN: Dynamic microstructural evolution of Al-AlN-Si materials [J]. Sci. China Mater., 2018, 61: 948
doi: 10.1007/s40843-017-9198-4
|
19 |
Duan C X, Yu Y, Yang P F, et al. Engineering new defects in MIL-100 (Fe) via a mixed-ligand approach to effect enhanced volatile organic compound adsorption capacity [J]. Ind. Eng. Chem. Res., 2020, 59: 774
doi: 10.1021/acs.iecr.9b05751
|
20 |
Wang Z, Zhang Y J, Jiang S, et al. The red deer antler: Bioinspired design of an Al-Si composite with a fenestrated network-particle structure [J]. J. Materiomics, 2020, 6: 545
doi: 10.1016/j.jmat.2020.04.002
|
21 |
Davis J R. Metals Handbook [M]. 2nd Ed., Materials Park, Ohio: ASM International, 1998: 415
|
22 |
Lyon R N. Liquid-Metals Handbook [M]. 2nd Ed., Washington: U. S. Government Printing Office, 1952: 38
|
23 |
Ayyar A, Chawla N. Microstructure-based modeling of crack growth in particle reinforced composites [J]. Compos. Sci. Technol., 2006, 66: 1980
doi: 10.1016/j.compscitech.2006.01.007
|
24 |
Wu Y, Yang L H, Xu T F, et al. Combined effect of rarefaction and effective viscosity on micro-elasto-aerodynamic lubrication performance of gas microbearings [J]. Micromachines, 2019, 10: 657
doi: 10.3390/mi10100657
|
25 |
Ding J X, Tian W B, Wang D D, et al. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge [J]. Corros. Sci., 2019, 156: 147
doi: 10.1016/j.corsci.2019.05.005
|
26 |
Zhang X H, Zhang Y, Tian B H, et al. Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts [J]. Composites, 2019, 160B: 110
|
27 |
Li H Y, Li P, Wang J, et al. Microstructure and properties of AgSnO2 contact materials prepared by cold spray [J]. Rare Met. Mater. Eng., 2017, 46: 3858
|
27 |
李海燕, 李 鹏, 王 军 等. 冷喷涂AgSnO2触点涂层的组织与性能 [J]. 稀有金属材料与工程, 2017, 46: 3858
|
28 |
Ding J X, Tian W B, Wang D D, et al. Arc erosion and degradation mechanism of Ag/Ti2AlC composite [J]. Acta Metall. Sin., 2019, 55: 627
|
28 |
丁健翔, 田无边, 汪丹丹 等. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理 [J]. 金属学报, 2019, 55: 627
doi: 10.11900/0412.1961.2018.00534
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|