Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1305-1315    DOI: 10.11900/0412.1961.2021.00498
  研究论文 本期目录 | 过刊浏览 |
Ag-CuO触点材料侵蚀过程的演化动力学及力学性能
马敏静1, 屈银虎1, 王哲1,2(), 王军1, 杜丹1
1.西安工程大学 材料工程学院 西安 710048
2.西安交通大学 物理学院 西安 710049
Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials
MA Minjing1, QU Yinhu1, WANG Zhe1,2(), WANG Jun1, DU Dan1
1.School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2.School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
Minjing MA, Yinhu QU, Zhe WANG, Jun WANG, Dan DU. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. Acta Metall Sin, 2022, 58(10): 1305-1315.

全文: PDF(3380 KB)   HTML
摘要: 

基于Ag-45CuO (骨架Ag-CuO)和Ag-20CuO (岛状Ag-CuO)触点材料的微观结构特征,利用物相识别结合显微结构分析重建了Ag-CuO材料的三维尺度模型,采用计算流体动力学(CFD)方法模拟了侵蚀作用下CuO微观结构的动态演变和重构过程。实验和模拟结果表明,反复的热冲击导致岛状Ag-CuO熔池表面形成火山口状凹坑,而骨架Ag-CuO熔池表面较为光滑。这是由于骨架Ag-CuO触点局部间隙作为CuO骨架重构的驱动力,可使重构后的CuO呈现出更明显的各向异性,从而有效束缚熔池中Ag的蒸发与偏析;而岛状Ag-CuO触点开断过程并未发生明显的CuO重构现象,其基体内岛状CuO结构易使触点在反复侵蚀作用下失效。随后,利用视觉识别技术结合有限元法,逆向重建了骨架Ag-CuO和岛状Ag-CuO触点表层局部的三维模型,进一步研究了CuO微观结构对触点表层力学性能的影响。结果表明,相比于岛状CuO结构,骨架CuO结构的相界面处不易产生应力和应变集中,该结构可有效分散熔池表面局部冲击力,显著提高触点的抗侵蚀性能。

关键词 Ag-CuO触点材料抗侵蚀特性骨架重构微观结构演变力学性能    
Abstract

Silver-copper oxide (Ag-CuO) materials are gaining more and more interest in the low voltage switches' field owing to their lower material transfer characteristics. However, with increasing arc erosion during the make-and-break operations, the CuO microstructure's dynamic evolution is complicated by the interaction of the convection-diffusion with the flow path. Therefore, tuning the microstructure to maximize the arc erosion properties of Ag-CuO contact materials using the dynamic model is crucial for their application in switches. In this study, three-dimensional models of Ag-CuO contacts were reconstructed by phase identification and microstructure analysis, using the microstructure characteristics of the Ag-45CuO (skeleton-restricted Ag-CuO) and Ag-20CuO (island-restricted Ag-CuO) contact materials. In parallel, the arc erosion dynamics of the microstructure evolution and skeleton reconstruction process were tracked and explored by employing computational fluid dynamics simulations. Experiment and simulation findings both indicate that the repetitive thermal effect can cause the formation of a cratered and smooth molten pool surface in island-restricted Ag-CuO and skeleton-restricted Ag-CuO, respectively. The local gap of skeleton-restricted Ag-CuO contact can function as the driving force to reconstruct the CuO skeleton, the newly formed CuO with an anisotropic microstructure, which can impede Ag's segregation and evaporation in the molten pool. The restructures of CuO are unimportant for the island-restricted Ag-CuO contact, and the continuous erosion impact of island CuO can render the contact invalid. Additionally, the CuO microstructure's effect on the mechanical properties of Ag-CuO contacts was examined by employing the local three-dimensional models, which were reconstructed using the visual recognition technology combined with the finite element approach. The findings exhibit that the skeleton CuO structure was less susceptible to stress and strain concentration at the molten pool surface compared with the island CuO structure, which can efficiently disperse the local effect force on the molten pool and can substantially enhance the Ag-CuO contact's erosion resistance.

Key wordsAg-CuO contact material    erosion resistance    skeleton reconstruction    dynamic microstructure evolution    mechanical property
收稿日期: 2021-11-18     
ZTFLH:  TG146.3  
基金资助:国家自然科学基金项目(52007137);国家自然科学基金项目(51607132);中国博士后科学基金面上项目(2021M702566);陕西省教育厅科研计划专项项目(20JK0661)
作者简介: 马敏静,女,1994年生,硕士生
图1  Ag-CuO触点材料实验和模拟流程图
MaterialxTm[21]ρ[21]c[21]μ[22]k[21]β[21]
%Kg·cm-3J·kg-1·K-1kg·m-1·s-1W·m-1·K-1K-1
Ag107.9123410.492831.1 × 10-34.29 × 10219.5 × 10-6
Ag (gas)107.9-1.1510121.8 × 10-52.55 × 10-23.7 × 10-3
CuO79.516006.32564-0.20 × 1020.93 × 10-6
表1  模型的物性参数[21,22]
图2  Ag-20CuO和Ag-45CuO触点材料的XRD谱、SEM像、EDS及其微观组织模拟图
图3  岛状Ag-CuO和骨架Ag-CuO触点表面侵蚀的模拟和实验图
图4  不同开断次数模拟条件下Ag-CuO触点熔池中CuO浓度曲线
图5  第1 × 103 cyc开断模拟过程中Ag-CuO触点熔池的表面形貌和Ag相的动态演化图
图6  1 × 104 cyc开断后触点垂直剖面的SEM像和模拟图
图7  岛状Ag-CuO和骨架Ag-CuO触点熔池表面的物相识别图及侵蚀层的三维模型图
图8  岛状Ag-CuO和骨架Ag-CuO触点熔池表面的变形、应力和轮廓图
图9  岛状Ag-CuO和骨架Ag-CuO触点熔池表面侵蚀层的力学性能
1 Lin Z J. Microstructure control and properties of Ag-SnO2 and Ag-Ni electrical contact materials [D]. Shenyang: Northeastern University, 2017
1 林智杰. Ag-SnO2和Ag-Ni电触头材料微结构调控与性能研究 [D]. 沈阳: 东北大学, 2017
2 He X Q, Fu H D, Zhang H T, et al. Machine learning aided rapid discovery of high performance silver alloy electrical contact materials [J]. Acta Metall. Sin., 2022, 58: 816
2 何兴群, 付华栋, 张洪涛 等. 机器学习辅助高性能银合金电接触材料的快速发现 [J]. 金属学报, 2022, 58: 816
doi: 10.11900/0412.1961.2021.00002
3 Han Y, Wang H S, Cao Y D, et al. Mechanical and electrical properties of Cu-W composites with micro-oriented structures [J]. Acta Metall. Sin., 2021, 57: 1009
doi: 10.11900/0412.1961.2020.00387
3 韩 颖, 王宏双, 曹云东 等. 微观定向结构Cu-W复合材料的力学与电学性能 [J]. 金属学报, 2021, 57: 1009
4 Wu C P, Yi D Q, Wang W, et al. Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 185
doi: 10.1016/S1003-6326(16)64105-5
5 Wang B J, Saka N, Rabinowicz E. Static gap erosion of Ag-CdO electrodes [J]. IEEE. Trans. Compon., Hybrids, Manuf. Technol., 1991, 14: 374
6 Li G J, Ma Y Y, Zhang X L, et al. Interface strengthening and fracture characteristics of the Ag-based contact materials reinforced with nanoporous SnO2 (Cu, CuO) phases [J]. Appl. Surf. Sci., 2021, 543: 148812
doi: 10.1016/j.apsusc.2020.148812
7 Chen S Y, Wang J, Yuan Z, et al. Microstructure and arc erosion behaviors of Ag-CuO contact material prepared by selective laser melting [J]. J. Alloys Compd., 2021, 860: 158494
doi: 10.1016/j.jallcom.2020.158494
8 Han X L, Wang Z, Li G J, et al. Interfacial thermal stress relief in Ag-SnO2 composites by in situ formation of CuO nanoparticles additive on SnO2 [J]. Ceram. Int., 2022, 48: 16638
doi: 10.1016/j.ceramint.2022.02.209
9 Tao Q Y, Zhou X L, Zhou Y H, et al. Contact resistance and arc erosion morphology of AgCuO electrical contact material [J]. Rare Met. Mater. Eng., 2015, 44: 1219
9 陶麒鹦, 周晓龙, 周允红 等. Ag-CuO电触头材料的接触电阻及电弧侵蚀形貌分析 [J]. 稀有金属材料与工程, 2015, 44: 1219
10 Wang Z, Wang Y P. Impact of convection-diffusion and flow-path interactions on the dynamic evolution of microstructure: Arc erosion behavior of Ag-SnO2 contact materials [J]. J. Alloys Compd., 2019, 774: 1046
doi: 10.1016/j.jallcom.2018.10.022
11 Zhang J F, Sun X J, Tong H, et al. Mechanism investigation on effects of glass composition on Ag/Si contact for crystalline silicon solar cells [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 6778
doi: 10.1007/s10854-020-05211-8
12 Liu S T, Sun Q Y, Wang J B, et al. Exploration of the influence mechanism of La doping on the arc erosion resistance of Ag/SnO2 contact materials by a laser-simulated arc [J]. J. Mater. Eng. Perform., 2021, 30: 7577
doi: 10.1007/s11665-021-05966-z
13 Wu Q, Xu G F, Yuan M, et al. Influence of operation numbers on arc erosion of Ag/CuO electrical contact material [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2497
doi: 10.1007/s10854-019-02786-9
14 Zhou X, Cui X L, Chen M, et al. Evaporation erosion of contacts under static arc by gas dynamics and molten pool simulation [J]. IEEE. Trans. Plasma Sci., 2015, 43: 4149
15 Wang Y L, Liang S H, Li Z B. Experiment and simulation analysis of surface structure for CuW contact after arc erosion [J]. Mater. Sci. Technol., 2015, 31: 243
doi: 10.1179/1743284714Y.0000000518
16 Wang J, Kang Y Q, Wang C. Microstructure and vacuum arc characteristics of CuO skeletal structure Ag-CuO contact materials [J]. J. Alloys Compd., 2016, 686: 702
doi: 10.1016/j.jallcom.2016.05.271
17 dos Santos J F, Staron P, Fischer T, et al. Understanding precipitate evolution during friction stir welding of Al-Zn-Mg-Cu alloy through in-situ measurement coupled with simulation [J]. Acta Mater., 2018, 148: 163
doi: 10.1016/j.actamat.2018.01.020
18 Wang Z, Wang X, Tong Y G, et al. Impact of structure and flow-path on in situ synthesis of AlN: Dynamic microstructural evolution of Al-AlN-Si materials [J]. Sci. China Mater., 2018, 61: 948
doi: 10.1007/s40843-017-9198-4
19 Duan C X, Yu Y, Yang P F, et al. Engineering new defects in MIL-100 (Fe) via a mixed-ligand approach to effect enhanced volatile organic compound adsorption capacity [J]. Ind. Eng. Chem. Res., 2020, 59: 774
doi: 10.1021/acs.iecr.9b05751
20 Wang Z, Zhang Y J, Jiang S, et al. The red deer antler: Bioinspired design of an Al-Si composite with a fenestrated network-particle structure [J]. J. Materiomics, 2020, 6: 545
doi: 10.1016/j.jmat.2020.04.002
21 Davis J R. Metals Handbook [M]. 2nd Ed., Materials Park, Ohio: ASM International, 1998: 415
22 Lyon R N. Liquid-Metals Handbook [M]. 2nd Ed., Washington: U. S. Government Printing Office, 1952: 38
23 Ayyar A, Chawla N. Microstructure-based modeling of crack growth in particle reinforced composites [J]. Compos. Sci. Technol., 2006, 66: 1980
doi: 10.1016/j.compscitech.2006.01.007
24 Wu Y, Yang L H, Xu T F, et al. Combined effect of rarefaction and effective viscosity on micro-elasto-aerodynamic lubrication performance of gas microbearings [J]. Micromachines, 2019, 10: 657
doi: 10.3390/mi10100657
25 Ding J X, Tian W B, Wang D D, et al. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge [J]. Corros. Sci., 2019, 156: 147
doi: 10.1016/j.corsci.2019.05.005
26 Zhang X H, Zhang Y, Tian B H, et al. Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts [J]. Composites, 2019, 160B: 110
27 Li H Y, Li P, Wang J, et al. Microstructure and properties of AgSnO2 contact materials prepared by cold spray [J]. Rare Met. Mater. Eng., 2017, 46: 3858
27 李海燕, 李 鹏, 王 军 等. 冷喷涂AgSnO2触点涂层的组织与性能 [J]. 稀有金属材料与工程, 2017, 46: 3858
28 Ding J X, Tian W B, Wang D D, et al. Arc erosion and degradation mechanism of Ag/Ti2AlC composite [J]. Acta Metall. Sin., 2019, 55: 627
28 丁健翔, 田无边, 汪丹丹 等. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理 [J]. 金属学报, 2019, 55: 627
doi: 10.11900/0412.1961.2018.00534
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.