Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 385-392    DOI: 10.11900/0412.1961.2020.00359
  综述 本期目录 | 过刊浏览 |
高熵合金中的晶格畸变
杨勇1,2(), 赫全锋1
1.香港城市大学 工学院 机械工程系 香港 999077
2.香港城市大学 工学院 材料科学与工程系 香港 999077
Lattice Distortion in High-Entropy Alloys
YANG Yong1,2(), HE Quanfeng1
1.Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong 999077, China
2.Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong 999077, China
引用本文:

杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
Yong YANG, Quanfeng HE. Lattice Distortion in High-Entropy Alloys[J]. Acta Metall Sin, 2021, 57(4): 385-392.

全文: PDF(1866 KB)   HTML
摘要: 

传统上,晶格畸变被认为是高熵合金区别于普通合金的结构特征。然而如何理解和表征在高熵合金中的晶格畸变还是一个悬而未决的问题。本文以最近发表的理论工作(包括理论模型和第一性原理计算)和实验工作为基础,主要探讨在高熵合金(乃至成分复杂合金)中晶格畸变(以及伴生的内禀残余应力或应变场)的物理来源以及实验特征。

关键词 高熵合金晶格畸变残余应变理论模型数值模拟    
Abstract

Lattice distortion has been deemed as one of the most distinctive structural features of high-entropy alloys. However, despite its fundamental importance, the notion of lattice distortion and its characterization is still an issue under debate. In this work, based on the recent work on theoretical modeling, atomistic simulations and experiments, the physical origin of lattice distortion in high-entropy alloys and its resultant intrinsic residual stresses or strains are discussed.

Key wordshigh-entropy alloy    lattice distortion    residual strain    theoretical modeling    numerical modeling
收稿日期: 2020-09-09     
ZTFLH:  TG131  
基金资助:香港研究资助局项目(CityU11200719)
图1  高熵合金中体系的势能随平均原子间距的变化(a) structural relaxation without shear displacements, leading to an ideal lattice (r is the interatomic distance, r0 is the first nearest neighbor interatomic distance)(b) further structural relaxation by allowing atoms undergo both shear and normal displacements
图2  fcc结构FeCoNiCr合金中的残余应变场各个应变分量沿(001)晶面的等高线分布图[20](a) the local atomic volumetric strain εim (b) the shear strain in xy plane εixy(c) the shear strain in xz plane εixz (d) the shear strain in yz plane εiyz
图3  fcc结构FeCoNiCr合金中的残余应变场各个应变分量分布直方图[20](a) εim (b) εixy (c) εixz (d) εiyz
图4  残余体应变均方根εRMS与合金相的关联[19]
图5  约化双体关联函数G(r)和Gaussian拟合得到的G(r)的半高宽[28]
图6  Al0.1CoCrFeNi高熵合金中的局域晶格残余应变和残余应变的波动[29]
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
4 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
5 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
6 He Q F, Ding Z Y, Ye Y F, et al. Design of high-entropy alloy: A perspective from nonideal mixing [J]. JOM, 2017, 69: 2092
7 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
8 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
9 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
10 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
11 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
12 Chuang M H, Tsai M H, Tsai C W, et al. Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy [J]. J. Alloys Compd., 2013, 551: 12
13 Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy [J]. Corros. Sci., 2020, 164: 108315
14 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
15 Pickering E J, Jones N G. High-entropy alloys: A critical assessment of their founding principles and future prospects [J]. Int. Mater. Rev., 2016, 61: 183
16 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
17 Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
18 He Q F, Yang Y. On lattice distortion in high entropy alloys [J]. Front. Mater., 2018, 5: 42
19 Ye Y F, Liu C T, Yang Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys [J]. Acta Mater., 2015, 94: 152
20 Ye Y F, Zhang Y H, He Q F, et al. Atomic-scale distorted lattice in chemically disordered equimolar complex alloys [J]. Acta Mater., 2018, 150: 182
21 Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
22 Mizutani U. Hume-Rothery Rules for Structurally Complex Alloy Phases [M]. Boca Raton, FL: CRC Press, 2011: 1
23 Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
24 Owen L R, Jones N G. Lattice distortions in high-entropy alloys [J]. J. Mater. Res., 2018, 33: 2954
25 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
26 Wang Z J, Huang Y H, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scr. Mater., 2015, 94: 28
27 Ge H J, Tian F Y. A review of ab initio calculation on lattice distortion in high-entropy alloys [J]. JOM, 2019, 71: 4225
28 Owen L R, Pickering E J, Playford H Y, et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2017, 122: 11
29 Shao Y T, Yuan R L, Hu Y, et al. The paracrystalline nature of lattice distortion in a high entropy alloy [Z]. arXiv preprint arXiv:1903.04082, 2019
30 Huang K. Solid State Physics [M]. Beijing: People Education Press, 1979: 1
30 黄 昆. 固体物理学 [M]. 北京: 人民教育出版社, 1979: 1
31 Patterson J D, Bailey B C. Solid-State Physics: Introduction to the Theory [M]. Berlin, Heidelberg: Springer, 2007: 1
32 Finney J L. Random packings and the structure of simple liquids. I. The geometry of random close packing [J]. Proc. Roy. Soc. London, 1970, 319A: 479
33 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
34 King H W. Quantitative size-factors for metallic solid solutions [J]. J. Mater. Sci., 1966, 1: 79
35 Eshelby J D. The continuum theory of lattice defects [A].
35 Seitz F, Turnbull D. Solid State Physics [M]. New York: Academic Press, 1956: 79
36 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
37 Yeh J W, Chang S Y, Hong Y D, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements [J]. Mater. Chem. Phys., 2007, 103: 41
38 Zhang F X, Tong Y, Jin K, et al. Lattice distortion and phase stability of Pd-doped NiCoFeCr solid-solution alloys [J]. Entropy, 2018, 20: 900
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[4] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[5] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[6] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[9] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[11] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[12] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[13] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[14] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[15] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.