Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1250-1257    DOI: 10.3724/SP.J.1037.2010.00201
  论文 本期目录 | 过刊浏览 |
海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响
张杰1,刘奉令1,2,李伟华1,段继周1,侯保荣1
1. 中国科学院海洋研究所, 青岛 266071
2. 重庆大学化学化工学院, 重庆 400044
EFFECTS OF SRB ON CORROSION OF Zn–Al–Cd ANODE IN MARINE SEDIMENT
ZHANG Jie 1, LIU Fengling 1,2, LI Weihua 1, DUAN Jizhou 1, HOU Baorong 1
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071
2. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044
引用本文:

张杰 刘奉令 李伟华 段继周 侯保荣. 海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响[J]. 金属学报, 2010, 46(10): 1250-1257.
, , , , . EFFECTS OF SRB ON CORROSION OF Zn–Al–Cd ANODE IN MARINE SEDIMENT[J]. Acta Metall Sin, 2010, 46(10): 1250-1257.

全文: PDF(2193 KB)  
摘要: 采用EIS, PC, SEM和EDS等方法, 通过在硫酸盐还原菌(SRB)的一个生长周期内测试Zn-Al-Cd牺牲阳极在不含和含SRB海泥中的腐蚀行为, 以对比研究海泥中SRB对其腐蚀行为的影响.EIS和PC测试结果显示, 实验初期, 试样在2种海泥中的腐蚀速率都快速增大,但由于SRB的大量增长, 其对试样的腐蚀作用不断增强, 所以在含SRB海泥中的腐蚀速率一直大于在不含SRB海泥的腐蚀速率; 实验后期, 由于SRB的大量死亡,其对试样的腐蚀作用已经十分微弱, 因此2者的腐蚀速率逐渐变得比较接近. SEM分析显示, 2种海泥中的试样表面都出现大量的腐蚀坑, 但含SRB试样表面的腐蚀程度更为严重. EDS结果显示含SRB试样表面的Zn和Al含量明显低于无SRB试样,说明了试样在含SRB海泥中的腐蚀溶解速度相对较大.
关键词 硫酸盐还原菌 Zn-Al-Cd 海泥 电化学阻抗谱    
Abstract:With the development of marine industry, the corrosion of metal structures in marine sediment has received increasing attention. Marine sediment is a very complex marine corrosion environment. The corrosion of sulfate–reducing bacteria (SRB) in the marine sediment is thought as one of major corrosion factors. Sacrificial anodes are widely used for protection of steel structures in the marine environment due to their high theoretical current efficiency, low active potential and low cost. However, in the marine environment, the sacrificial anodes may be attacked by microbial activity, which leads to serious failure and energy loss. Some researchers have investigated the biocidal activity of sacrificial anode, but work about the influence of microbes on the performance of sacrificial anode has been rarely reported. In this paper, a comparative study of the corrosion behavior of Zn–Al–Cd sacrificial anode in marine sediment without and with SRB was carried out using electrochemical impedance spectroscopy (EIS), polarization curve (PC), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results of EIS and PC showed that the corrosion of the sample was enhanced sharply in the presence of SRB at the beginning, while the corrosion performance of the sample in marine sediment with and without SRB gradually became similar with each other due to the decreasing SRB populations. SEM images revealed that the damage of the sample in the SRB–containing medium was severer than that in the sterile medium. EDS analysis showed that the concentration of Al and Zn in the surface film of the sample with SRB was much lower than that for the sample without SRB, which suggests that the corrosion rate of the sacrificial anode is accelerated by SRB.
Key wordssulfate reducing bacteria    Zn–Al–Cd    marine sediment    electrochemical impedance spectroscopy
收稿日期: 2010-04-26     
基金资助:

科技部国家支撑计划项目2007BAB27B01和国家自然科学基金项目41006054资助

作者简介: 张杰, 男, 1976年生, 博士, 助理研究员
[1] Huang Y L. Mater. Corros.,2004; 55:124 [2] Zhao X D, Wu P, Jiang J, Duan J Z, Hou B R. Chin. J. Mater. Res., 2007; 21:230 (赵晓栋,吴鹏,姜江,段继周,侯保荣. 材料研究学报, 2007;21:230) [3] Wei A J, Huo F Y, Xiong X J, Jiang H Y, Yang H L. Corros. & Prot., 2009; 30:100 (魏爱军,霍富永,熊相军,蒋华义,杨海龙. 腐蚀与防护, 2009; 30:100 [4] Sun C,Han E H,Wang X. Corros. Sci. Prot. Technol.?, 2003; 15:104 (孙成,韩恩厚,王旭. 腐蚀科学与防护技术, 2003; 15:104) [5] Zhu Y Y,Huang Y L,Huang S D,Zhang Y Y. Corros. Sci. Prot. Technol.?, 2008; 20:118 (朱永艳, 黄彦良, 黄侣迪, 张杨杨. 腐蚀科学与防护技术, 2008; 20: 118) [6] Antony P J, Chongdar S, Kumar P, Raman R. Electrochim. Acta, 2007; 52:3985 [7] Duan J Z, Hou B R, Yu Z G. Mater. Sci. Eng. C, 2006; 26:624 [8] Antony P J, Singh Raman R K , Mohanram R, Kumar P, Raman R. Corros. Sci.?, 2008; 50:1858 [9] Castaneda H, Benetton X D. Corros. Sci.?, 2008; 50: 1169 [10] T S Rao, Kora A J, Anupkumar B, Narasimhan S V, Feser R. Corros. Sci.?, 2005; 47:1071 [11] Chang X T, CHEN S G, GAO G H, YIN Y S, CHENG S, LIU T. Acta Metall, 2009; 22:313 [12] Yuan C J, Liang C H,An X W. Wuhan Univ. J. Nat. Sci.? , 2010; 15:064 [13] Fu Y, Zhai X R, Wang J, Li T, Liu Z B, Zhang X S. Chin. Rare Earths, 2005; 26:49 (符 岩,翟秀静,王 杰,李 涛,柳忠宝,张晓顺. 稀 土, 2005; 26:49) [14] Long P, Li Q F. Corros. Sci. Prot. Technol., 2007; 19:235 (龙萍, 李庆芬. 腐蚀科学与防护技术, 2007; 19:235) [15] Sun C, Han E H. The Chin. J. Nonferrous Met.?, 2003; 13:1262 (孙成,韩恩厚. 中国有色金属学报, 2003; 13:1262) [16] Ilhan-Sungur E, Cansever N, Cotuk A. Corros. Sci.?, 2007; 49:1097 [17] Santana Rodr?′guez J J, Santana Herna′ndez F J, Gonza′lez Gonza′lez J E. Corros. Sci.?, 2006;48:1265 [18] Sheng X X, Ting Y P, Pehkonen S O. Corros. Sci.?, 2007;49:2159 [19] Xu C M, Zhang Y H, Cheng G X, Zhu W S. Mater. Charact., 2008; 59:245 [20] Wan Yi, Zhang D, Liu H Q, Li Y J, Hou B R. Electrochim. Acta., 2010; 55:1528
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[3] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[4] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[5] 卿永长,杨志炜,鲜俊,许进,闫茂成,吴堂清,于长坤,于利宝,孙成. 交流电和微生物共同作用下Q235钢的腐蚀行为*[J]. 金属学报, 2016, 52(9): 1142-1152.
[6] 魏仁超, 许凤玲, 蔺存国, 唐晓, 李焰. 远青弧菌、硫酸盐还原菌及其混合菌种作用下 B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461-1470.
[7] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[8] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[9] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[10] 张杰 宋秀霞 栾鑫 孙彩霞 段继周 侯保荣. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响[J]. 金属学报, 2012, 48(12): 1495-1502.
[11] 郭少强 许立宁 常炜 密雅荣 路民旭. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074.
[12] 黄发 王俭秋 韩恩厚 柯伟. 硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J]. 金属学报, 2011, 47(7): 809-815.
[13] 王长罡 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 354-360.
[14] 朱庆振 薛文斌 鲁亮 杜建成 刘贯军 李文芳. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析[J]. 金属学报, 2011, 47(1): 74-80.
[15] 宋利晓 张昭 张鉴清 曹楚南. 纳米结构黑镍薄膜的电沉积机理[J]. 金属学报, 2011, 47(1): 123-128.