Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 780-790    DOI: 10.11900/0412.1961.2020.00246
  研究论文 本期目录 | 过刊浏览 |
Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响
王迪1,2(), 王栋2, 谢光2, 王莉2, 董加胜2, 陈立佳1
1.沈阳工业大学 材料科学与工程学院 沈阳 110870
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy
WANG Di1,2(), WANG Dong2, XIE Guang2, WANG Li2, DONG Jiasheng2, CHEN Lijia1
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
Di WANG, Dong WANG, Guang XIE, Li WANG, Jiasheng DONG, Lijia CHEN. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. Acta Metall Sin, 2021, 57(6): 780-790.

全文: PDF(11233 KB)   HTML
摘要: 

采用电镀Pt和化学气相沉积渗铝法在一种镍基单晶高温合金表面制备Pt-Al涂层,该涂层为单一β-(Ni, Pt)Al相结构。选用涂盐法分别在无涂层和Pt-Al涂层试样表面涂覆Na2SO4盐,并在900℃常压炉中进行热腐蚀实验。通过热腐蚀动力学、热腐蚀产物、热腐蚀宏观表面形貌和微观结构的对比,分析Pt-Al涂层对镍基单晶高温合金热腐蚀行为的影响。采用XRD、SEM、EDS和EPMA等检测方法进行分析。实验结果表明:经900℃热腐蚀后,Pt-Al涂层可以提高基体合金的抗热腐蚀性能,Pt-Al涂层试样的热腐蚀速率小于无涂层试样;β-(Ni, Pt)Al相中的Pt原子能够抑制S原子向β-(Ni, Pt)Al相中扩散,将S原子阻隔在氧化物-金属界面处,从而降低基体合金的热腐蚀速率;Pt原子也能够将大量难熔的Ta原子阻隔在互扩散区内,仅有少量的Ta原子扩散到氧化物中,减少了Ta2O5的形成;此外,Pt-Al涂层能够在一定程度上抑制氧化膜-金属界面处孔洞的形成。

关键词 Pt-Al涂层热腐蚀单晶高温合金镍基合金    
Abstract

Pt-Al coating has been widely used in engine rotor blades because of its ability to improve the oxidation and hot corrosion resistance of Ni-based superalloys. However, the effect exerted by Pt on S and other refractory elements, as well as the rupture mechanisms, is under debate. To investigate the influence of Pt-Al coating on the corrosion resistance of single-crystal superalloy at high temperature, the hot corrosion test utilized Na2SO4 salt coated on the surface of the Pt-Al coating samples and the uncoated ones were carried out at 900oC, respectively. Using several techniques, such as XRD, SEM, EDS, and EPMA, the influence of Pt-Al coating on the hot corrosion behaviors of a Ni-based single-crystal superalloy was analyzed. Moreover, the hot corrosion kinetics, hot corrosion products, and microstructure evolution during the process were analyzed. The results reveal that the hot corrosion resistance of the substrate alloy was enhanced by Pt-Al coating. The hot corrosion rate of the Pt-Al coating sample was lower than that of the uncoated one. Thus, it can be inferred that Pt-Al coating exhibited better hot corrosion resistance. Pt prevented the diffusion of S into the β-(Ni, Pt)Al phase. The S atom was present at the oxide-metal interface, which reduced the hot corrosion rate of the substrate alloy. The presence of Pt in the β-(Ni, Pt)Al obstructed the great mass of Ta in the inter diffusion zone, which led to the diffusion of only a small quantity of Ta atoms into the oxide, and reduced the formation of Ta2O5. Finally, Pt-Al coating was also found to restrain to some extent the void formation at the oxide-metal interface.

Key wordsPt-Al coating    hot corrosion    single-crystal superalloy    Ni-based alloy
收稿日期: 2020-07-09     
ZTFLH:  TG174.31  
基金资助:国家重点研发计划项目(2016YFB0701403);国家科技重大专项项目(2017-Ⅵ-0019-0091);国家科技重大专项项目Nos.2017-Ⅵ-0019-0091、2017-Ⅵ-0003-0073和;国家自然科学基金项目(51771204)
作者简介: 王 迪,男,1984年生,博士生
图1  Pt-Al涂层截面微观组织的BSE像
图2  在常压炉中900℃热腐蚀140 h后无涂层和Pt-Al涂层试样的宏观表面
图3  在常压炉中900℃热腐蚀过程中无涂层和Pt-Al涂层试样质量变化曲线
图4  在常压炉中900℃热腐蚀140 h后无涂层和Pt-Al涂层试样表面XRD谱
图5  在常压炉中900℃热腐蚀140 h后的无涂层和Pt-Al涂层试样表面微观形貌的BSE像
图6  在常压炉中900℃热腐蚀140 h后无涂层和Pt-Al涂层试样的截面微观组织的BSE像
SamplePositionONaAlTiCrCoNiTaWSPt
Uncoated162.674.811.9119.445.051.364.410.35---
(in Fig.6a)254.9813.28-6.572.461.426.3014.97---
354.94-9.134.0015.518.268.17----
451.94-3.581.794.677.3114.972.0613.68--
Pt-Al coating162.036.892.2523.172.940.242.12---0.36
(in Fig.6b)253.91-19.021.8011.294.618.84---0.53
355.86-36.680.714.00-2.21---0.54
436.43-30.801.222.11-20.271.07-5.192.91
54.17-33.513.996.32-1.34--13.220.46
表1  图6中不同区域的EDS结果 (atomic fraction / %)
SampleCorrosive layerβ-(Ni, Pt)Al layerIDZSRZ
Initial-17.9 ± 0.820.9 ± 0.8-
Corrosive16.55 ± 2.8317.45 ± 2.3620.95 ± 1.8623.38 ± 1.34
表2  Pt-Al涂层试样热腐蚀前后截面组织数据统计 (μm)
图7  在常压炉中900℃热腐蚀140 h后无涂层和Pt-Al涂层试样截面的SEM像及EPMA元素分布
PhaseTemperature / oCΔGf / (kJ·mol-1)
Al2S3827-611.859
927-583.401
NiS827-59.758
927-52.519
PtS827-39.470
927-30.213
PtS2827-31.593
927-13.818
NiAl827-106.899
927-104.179
Ni3Al827-139.142
927-135.956
Ni2Al3827-256.613
927-249.782
表3  827和927℃下生成物的标准Gibbs自由能变化[28]
1 Swadźba R, Hetmańczyk M, Wiedermann J, et al. Microstructure degradation of simple, Pt- and Pt + Pd-modified aluminide coatings on CMSX-4 superalloy under cyclic oxidation conditions [J]. Surf. Coat. Technol., 2013, 215: 16
2 Rehman A, Bidabadi M H S, Liang Y, et al. Hot corrosion behaviour of yttrium and aluminium modified wear resistance coating alloy in mixed sulphate at 900oC [J]. Corros. Sci., 2020, 165: 108369
3 Liu Y D, Sun J, Pei Z L, et al. Oxidation and hot corrosion behavior of NiCrAlYSi+NiAl/cBN abrasive coating [J]. Corros. Sci., 2020, 167: 108486
4 Montero X, Ishida A, Meißner T M, et al. Effect of surface treatment and crystal orientation on hot corrosion of a Ni-based single-crystal superalloy [J]. Corros. Sci., 2020, 166: 108472
5 Ye L Y, Chen H F, Yang G, et al. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 34
6 Jiang C Y, Yang Y F, Zhang Z Y, et al. A Zr-doped single-phase Pt-modified aluminide coating and the enhanced hot corrosion resistance [J]. Corros. Sci., 2018, 133: 406
7 Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt+Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900oC [J]. Corros. Sci., 2020, 167: 108527
8 Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
9 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Pressure, 2001: 1
9 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 1
10 Simms N J, Encinas-Oropesa A, Nicholls J R. Hot corrosion of coated and uncoated single crystal gas turbine materials [J]. Mater. Corros., 2008, 59: 476
11 Goebel J A, Pettit F S. Na2SO4-induced accelerated oxidation (hot corrosion) of nickel [J]. Metall. Trans., 1970, 1: 1943
12 Potgieter J H, Maledi N B. High temperature corrosion resistance of Pt-based superalloys in 0.2% SO2-N2 Gas [J]. Open Mater. Sci. J., 2014, 8: 18
13 Zhang Y, Lee W Y, Haynes J A, et al. Synthesis and cyclic oxidation behavior of a (Ni, Pt)Al coating on a desulfurized Ni-base superalloy [J]. Metall. Mater. Trans., 1999, 30A: 2679
14 Lehnert G, Meinhardt H W. A new protective coating for nickel alloys [J]. Electrodeposit. Surf. Treat., 1973, 1: 189
15 Yu C T, Liu H, Ullah A, et al. High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100oC: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
16 Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
17 Wang R L, Gong X Y, Peng H, et al. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations [J]. Appl. Surf. Sci., 2015, 326: 124
18 Chang J X, Wang D, Liu T, et al. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy [J]. Corros. Sci., 2015, 98: 585
19 Chang J X, Wang D, Zhang G, et al. Interaction of Ta and Cr on Type-I hot corrosion resistance of single crystal Ni-base superalloys [J]. Corros. Sci., 2017, 117: 35
20 Zhu R Z, Zuo Y, Guo M J. An approach to mechanism of internal sulphidation-internal oxidation during hot corrosion of Ni-base alloy [J]. Acta Metall. Sin., 1985, 21: A451
20 朱日彰, 左 禹, 郭曼玖. 镍基高温合金热腐蚀过程中内硫化-内氧化机制的探讨 [J]. 金属学报, 1985, 21: A451
21 Haynes J A, Zhang Y, Lee Y W, et al. Effects of platinum additions and sulfur impurities on the microstructure and scale adhesion behavior of single-phase CVD aluminide bond coatings [A]. Elevated Temperature Coatings: Science and Technology Ⅲ [C]. Warrendale, PA: TMS, 1999: 185
22 Grabkee H J, Kurbatov G, Schmutzler H J. Segregation beneath oxide scales [J]. Oxid. Met., 1995, 43: 97
23 Hou P Y, Priimak K. Interfacial segregation, pore formation, and scale adhesion on NiAl alloys [J]. Oxid. Met., 2005, 63: 113
24 Hou P Y, Izumi T, Gleeson B. Sulfur segregation at Al2O3/γ-Ni+γ'-Ni3Al interfaces: Effects of Pt, Cr and Hf additions [J]. Oxid. Met., 2009, 72: 109
25 Jiang C, Besser M F, Sordelet D J, et al. A combined first-principles and experimental study of the lattice site preference of Pt in B2 NiAl [J]. Acta Mater., 2005, 53: 2101
26 Hou P Y, McCarty K F. Surface and interface segregation in β-NiAl with and without Pt addition [J]. Scr. Mater., 2006, 54: 937
27 Rivoaland L, Maurice V, Josso P, et al. The effect of sulfur segregation on the adherence of the thermally-grown oxide on NiAl—I: Sulfur segregation on the metallic surface of NiAl(001) single-crystals and at NiAl(001)/Al2O3 interfaces [J]. Oxid. Met., 2003, 60: 137
28 Barin I, translated by Cheng N L, Niu S T, Xu G Y, et al. Thermochemical Data of Pure Substances [M]. Beijing: Science Press, 2003: 67
28 Barin I著, 程乃良, 牛四通, 徐桂英等译. 纯物质热化学数据手册 [M]. 北京: 科学出版社, 2003: 67
29 Cadoret Y, Bacos M P, Josso P, et al. Effect of Pt additions on the sulfur segregation, void formation and oxide scale growth of cast nickel aluminides [J]. Mater. Sci. Forum, 2004, 461-464: 247
30 Gururajan M P, Abinandanan T A. Mean field theory of point defects in β-NiAl [J]. Intermetallics, 2000, 8: 759
31 Pint B A, Wright I G, Lee W Y, et al. Substrate and bond coat compositions: Factors affecting alumina scale adhesion [J]. Mater. Sci. Eng., 1998, A245: 201
32 Carling K M, Carter E A. Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface [J]. Acta Mater., 2007, 55: 2791
33 Dickey E C, Pint B A, Alexander K B, et al. Oxidation behavior of platinum-aluminum alloys and the effect of Zr doping [J]. J. Mater. Res., 1999, 14: 4531
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[6] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[7] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[8] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[10] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[11] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[12] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[13] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[14] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[15] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.