Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 529-541    DOI: 10.11900/0412.1961.2020.00450
  综述 本期目录 | 过刊浏览 |
块体非晶合金的3D打印成形研究进展
李宁(), 黄信
华中科技大学 材料科学与工程学院 武汉 430074
Recent Advances on 3D Printed Bulk Metallic Glasses
LI Ning(), HUANG Xin
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
Ning LI, Xin HUANG. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 529-541.

全文: PDF(12925 KB)   HTML
摘要: 

当前,块体非晶合金作为结构材料,其应用不仅面临室温脆性挑战,而且遭遇成形制造瓶颈。解决上述难题已成为近年来材料领域的研究热点与难点之一。近年来发展起来的3D打印技术,已逐渐成为解决块体非晶合金现存困境,实现工程应用的有效途径之一。然而,由于非晶合金具有与晶态材料完全不同的原子结构,3D打印成形中的微观组织演变、缺陷形成与抑制、性能调控等方面的基础理论不同于常规晶态材料,深入剖析上述科学问题对促进块体非晶合金3D打印成形技术的发展具有重要意义。本文依据近年来的国内外研究动态,针对上述问题进行综合分析,并对其发展趋势进行展望。

关键词 块体非晶合金3D打印微观结构力学性能    
Abstract

The application of bulk metallic glasses (BMGs) as structural materials not only involves the challenge of room temperature brittleness but also bottlenecks related to formation and manufacturing. Solving these issues has become one of the research hotspots and difficulties in the material field recently. The recently developed 3D printing technology has gradually become one of the key methods to solve the existing difficulties of BMGs to realize their engineering applications. However, because BMGs have a completely different atomic structure than crystalline materials, the basic theories of material microstructure evolution, defect formation and suppression, and performance adjustment in 3D printing are completely different. The in-depth analysis of the abovementioned scientific issues is very important for the development of BMG 3D printing technology. This article is mainly focused on the research trends at home and abroad with a comprehensive analysis of the above problems and looks forward to the development trends of 3D printing technology.

Key wordsbulk metallic glass    3D printing    microstructure    mechanical property
收稿日期: 2020-11-09     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金项目(51971097)
图1  块体非晶合金的3D打印成形技术:选区激光熔化(SLM)、激光近净成形(LENS)[15]、熔丝制造(FFF)[16]、热喷涂3D打印(TS3DP)[17]、激光诱导前向转移(LIFT)[19]以及直接金属书写(DMW) 3D打印[20](a) selective laser melting (SLM) (b) laser engineering net shaping (LENS)[15](c) fused filament fabrication (FFF)[16] (d) thermal spray 3D printing (TS3DP)[17](e) laser induced forward transfer (LIFT)[19] (f) direct metal writing (DMW) 3D printing[20]

Composition

(atomic fraction / %)

Feedstock3D printed sampleTechniqueRef.
Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9AmorphousAmorphousSLM[24]
Fe37.5Cr27.5Mo10C12B13SLM[27,28]
Fe68.3C6.9Si2.5B6.7P8.7Cr2.3Mo2.5Al2.1SLM[29]
Fe55Cr25Mo16B2C2SLM[30]
Zr60.14Cu22.31Fe4.85Al9.7Ag3SLM[31,32]
Zr52.5Cu17.9Ni14.6Al10Ti5SLM[33]
Zr52.5Ti5Al10Ni14.6Cu17.9LFP[34]
Zr65Cu17.5Ni10Al7.5LFP[25]
Zr44Ti11Cu10Ni10Be25FFF[16]
Fe48C15B6Mo14Cr15Y2TS3DP[17]
Cu47Ti33Zr11Ni8Si1AmorphousAmorphous + crystallineLENS[35]
Fe71Si10B11C6Cr2SLM[36]
Zr55Cu30Al10Ni5SLM[22,37]
Zr60Fe10Cu20Al10SLM[38]
Zr59.3Cu28.8Nb1.5Al10.4SLM[39,40]
Al86Ni6Y4.5Co2La1.5SLM[21]
Cu50Zr43Al7SLM[41]
Cu46Zr47Al6Co1SLM[42]
Zr52.5Ti5Al10Ni14.6Cu17.9SLM[43]
Zr51Ti5Cu25Ni10Al9LENS[44,45]
Zr50Ti5Cu27Ni10Al8LENS[46]
Fe58Cr15Mn2B16C4Mo2Si1W1Zr1Amorphous + crystallineAmorphous + crystallineLENS[14]
Zr55Cu30Al10Ni5LENS[47,48]
Zr39.6Ti33.9Nb7.6Cu6.4Be12.5LENS[49]
Fe74Mo4P10C7.5B2.5Si2SLM[12]
Fe70Cr5Ni3Mo3W9Si5B5SLM[50]
Zr57.4Ni8.2Cu16.4Ta8Al10SLM[51]

Fe38Ni30-xSi16B14V2Mx

(M contains Al, Ti, Mo, and C)

LENS[52]
Fe54.35Cr18.47Mn2.05Mo13.93W5.77B3.22C0.90Si1.32Amorphous + crystallineAmorphousSLM[53]
Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2SLM[23]
Al85Ni5Y6Co2Fe2Amorphous + crystallineFully crystallizedSLM[54]
Fe41Co7Cr15Mo14C15B6Y2FDM[55]
表1  3D打印成形块体非晶合金与原材料的相组成[12,14,16,17,21~55]
图2  熔池区(P1)、热影响区(P2)和无相变区(P3)的热过程曲线以及热影响区中不同位置的热过程曲线[24]
图3  Zr55Al10Ni5Cu30 非晶合金粉体经激光表面熔覆不同次数的微观结构、熔覆1~7层的截面微结构、熔覆20次后的SEM像和沉积7层的SEM像[48]
图4  激光能量密度为30.8和3.8 J/mm3时不同晶体键的演化过程[56]
图5  Zr52.5Cu17.9Ni14.6Al10Ti5粉末、铸态样品和不同激光能量密度下SLM成形样品的XRD谱、激光能量密度13 J/mm3时3D打印样品的同步辐射实验及衍射图样[43]
图6  不同扫描策略和扫描速率下的SLM成形Zr52.5Ti5Cu17.9Ni14.6Al10非晶合金的BSE-SEM像[33]
图7  非晶与铜界面处的TEM分析[26]
图8  SLM成形合金中的微裂纹
图9  SLM成形锆基非晶圆柱与铸态非晶压缩曲线[22]

Composition

(atomic fraction / %)

Technique

σy

MPa

σf

MPa

εp

%

E1

GPa

KQ

MPa·m1/2

Ref.
Zr60.14Cu22.31Fe4.85Al9.7Ag3SLM1607 ± 141734 ± 301.43 ± 0.1778 ± 436 ± 1.8[31]
Zr55Cu30Al10Ni5SLM1504 ± 1031504 ± 103070[22]
Zr52.5Cu17.9Ni14.6Al10Ti5SLM600-1500600-15000-0.285[33]
Zr59.3Cu28.8Nb1.5Al10.4LENS13001300083[25]
Zr44Ti11Cu10Ni10Be25FFF790-1220790-12200[16]
Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2SLM1690 ± 501690 ± 500100 ± 5[23]
表2  3D打印成形块体非晶合金的力学性能[16,22,23,25,31,33]
图10  按比例混合了Cu、CuNi20和CuNi30粉末的SLM成形样品的应力-应变曲线和通过引入第二相后SLM成形铁基非晶合金的力学性能变化情况[26]
图11  SLM成形的Zr59.3Cu28.8Nb1.5Al10.4样品疲劳裂纹扩展实验结果[64]
1 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
2 Nieh T G, Wadsworth J. Homogeneous deformation of bulk metallic glasses [J]. Scr. Mater., 2006, 54: 387
3 Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
4 Wang J F, Li R, Hua N B, et al. Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity [J]. J. Mater. Res., 2011, 26: 2072
5 Cao L F. Research on the preparation of Fe84(NbV)7B9 nanocrystalline soft magnetic materials and related fundamental theory [D]. Changsha: Central South University, 2006
5 曹玲飞. Fe84(NbV)7B9纳米晶软磁材料的制备及其相关基础问题的研究 [D]. 长沙: 中南大学, 2006
6 Pan J, Zhang M, Chen Q, et al. Study of anticorrosion ability of Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9 bulk metallic glass in strong acid solutions [J]. Rare Met. Mater Eng., 2008, 37(suppl.4): 805
6 潘 杰, 张 猛, 谌 祺等. FeCoCrMoCBY块体非晶合金在强酸介质中的耐蚀性能 [J]. 稀有金属材料与工程, 2008, 37(): 805
7 Suryanarayana C, Inoue A. Bulk Metallic Glass [M]. Boca Raton: CRC Press, 2011: 1
8 Schroers J. Processing of bulk metallic glass [J]. Adv. Mater., 2010, 22: 1566
9 Schroers J, Paton N. Amorphous metal alloys form like plastics [J]. Adv. Mater. Process., 2006, 164: 61
10 Saotome Y, Miwa S, Zhang T, et al. The micro-formability of Zr-based amorphous alloys in the supercooled liquid state and their application to micro-dies [J]. J. Mater. Process. Technol., 2001, 113: 64
11 Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium [J]. Acta Mater., 2012, 60: 3849
12 Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting [J]. Mater. Today, 2013, 16: 37
13 Katakam S, Hwang J Y, Paital S, et al. In situ laser synthesis of Fe-based amorphous matrix composite coating on structural steel [J]. Metall. Mater. Trans., 2012, 43A: 4957
14 Zheng B, Zhou Y, Smugeresky J E, et al. Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping [J]. Metall. Mater. Trans., 2009, 40A: 1235
15 Laser engineered net shaping, LENS [EB/OL].
16 Gibson M A, Mykulowycz N M, Shim J, et al. 3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses [J]. Mater. Today, 2018, 21: 697
17 Zhang C, Wang W, Li Y C, et al. 3D printing of Fe-based bulk metallic glasses and composites with large dimensions and enhanced toughness by thermal spraying [J]. J. Mater. Chem., 2018, 6A: 6800
18 Gorodesky N, Sedghani‐Cohen S, Altman M, et al. Concurrent formation of metallic glass during laser forward transfer 3D printing [J]. Adv. Funct. Mater., 2020, 30: 2001260
19 Visser C W, Pohl R, Sun C, et al. Toward 3D printing of pure metals by laser-induced forward transfer [J]. Adv. Mater., 2015, 27: 4087
20 Duoss E. Direct ink writing of bulk metallic glasses [R/OL]. , 2017
21 Li X P, Kang C W, Huang H, et al. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties [J]. Mater. Sci. Eng., 2014, A606: 370
22 Ouyang D, Li N, Xing W, et al. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting [J]. Intermetallics, 2017, 90: 128
23 Deng L, Wang S H, Wang P, et al. Selective laser melting of a Ti-based bulk metallic glass [J]. Mater. Lett., 2018, 212: 346
24 Ouyang D, Xing W, Li N, et al. Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting [J]. Addit. Manuf., 2018, 23: 246
25 Bordeenithikasem P, Stolpe M, Elsen A, et al. Glass forming ability, flexural strength, and wear properties of additively manufactured Zr-based bulk metallic glasses produced through laser powder bed fusion [J]. Addit. Manuf., 2018, 21: 312
26 Li N, Zhang J J, Xing W, et al. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness [J]. Mater. Des., 2018, 143: 285
27 Mahbooba Z, Thorsson L, Unosson M, et al. Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness [J]. Appl. Mater. Today, 2018, 11: 264
28 Hofmann D C, Bordeenithikasem P, Pate A, et al. Developing processing parameters and characterizing microstructure and properties of an additively manufactured FeCrMoBC metallic glass forming alloy [J]. Adv. Eng. Mater., 2018, 20: 1800433
29 Jung H Y, Choi S J, Prashanth K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study [J]. Mater. Des., 2015, 86: 703
30 Wang L, Wang H, Liu Y K, et al. Selective laser melting helps fabricate record-large bulk metallic glass: Experiments, simulation and demonstrative part [J]. J. Alloys Compd., 2019, 808: 151731
31 Zhang C, Li X M, Liu S Q, et al. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications [J]. J. Alloys Compd., 2019, 790: 963
32 Xing W, Ouyang D, Chen Z, et al. Effect of energy density on defect evolution in 3D printed Zr-based metallic glasses by selective laser melting [J]. Sci. China Phys. Mech. Astron., 2019, 63: 226111
33 Li X P, Roberts M P, O'Keeffe S, et al. Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and mechanical properties [J]. Mater. Des., 2016, 112: 217
34 Shen Y Y, Li Y Q, Chen C, et al. 3D printing of large, complex metallic glass structures [J]. Mater. Des., 2017, 117: 213
35 Sun H, Flores K M. Laser deposition of a Cu-based metallic glass powder on a Zr-based glass substrate [J]. J. Mater. Res., 2011, 23: 2692
36 ŁŻrodowski, Wysocki B, Wróblewski R, et al. New approach to amorphization of alloys with low glass forming ability via selective laser melting [J]. J. Alloys Compd., 2019, 771: 769
37 Yang C, Zhang C, Xing W, et al. 3D printing of Zr-based bulk metallic glasses with complex geometries and enhanced catalytic properties [J]. Intermetallics, 2018, 94: 22
38 Luo Y, Xing L L, Jiang Y D, et al. Additive manufactured large Zr-based bulk metallic glass composites with desired deformation ability and corrosion resistance [J]. Materials (Basel), 2020, 13: 597
39 Pacheco V, Karlsson D, Marattukalam J J, et al. Thermal stability and crystallization of a Zr-based metallic glass produced by suction casting and selective laser melting [J]. J. Alloys Compd., 2020, 825: 153995
40 Marattukalam J J, Pacheco V, Karlsson D, et al. Development of process parameters for selective laser melting of a Zr-based bulk metallic glass [J]. Addit. Manuf., 2020, 33: 101124
41 Lu X Y, Nursulton M, Du Y L, et al. Structural and mechanical characteristics of Cu50Zr43Al7 bulk metallic glass fabricated by selective laser melting [J]. Materials (Basel), 2019, 12: 75
42 Gao X D, Liu Z L, Li J H, et al. Selective laser melting of CuZr-based metallic glass composites [J]. Mater. Lett., 2020, 259: 126724
43 Pauly S, Schricker C, Scudino S, et al. Processing a glass-forming Zr-based alloy by selective laser melting [J]. Mater. Des., 2017, 135: 133
44 Zhai L L, Lu Y Z, Wang L, et al. Quantitative evaluation of hidden hierarchical pores in laser additive manufactured bulk metallic glasses via computed tomography [J]. Mater. Lett., 2020, 265: 127376
45 Zhai L L, Lu Y Z, Zhao X Y, et al. High-throughput screening of laser additive manufactured metallic glass via ultrasonic wave [J]. Sci. Rep., 2019, 9: 17660
46 Xu H D, Lu Y Z, Liu Z H, et al. Laser 3D printing of Zr-based bulk metallic glass [J]. J. Manuf. Process., 2019, 39: 102
47 Lin X, Zhang Y Y, Yang G L, et al. Microstructure and compressive/tensile characteristic of large size Zr-based bulk metallic glass prepared by laser solid forming [J]. J. Mater. Sci. Technol., 2019, 35: 328
48 Yang G L, Lin X, Liu F C, et al. Laser solid forming Zr-based bulk metallic glass [J]. Intermetallics, 2012, 22: 110
49 Su S, Lu Y Z. Laser directed energy deposition of Zr-based bulk metallic glass composite with tensile strength [J]. Mater. Lett., 2019, 247: 79
50 Liang S X, Wang X Q, Zhang W C, et al. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability [J]. Appl. Mater. Today, 2020, 19: 100543
51 Zhang P C, Ouyang D, Liu L. Enhanced mechanical properties of 3D printed Zr-based BMG composite reinforced with Ta precipitates [J]. J. Alloys Compd., 2019, 803: 476
52 Zhu Q J, Qu S Y, Wang X H, et al. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding [J]. Appl. Surf. Sci., 2007, 253: 7060
53 Nong X D, Zhou X L, Ren Y X. Fabrication and characterization of Fe-based metallic glasses by Selective Laser Melting [J]. Opt. Laser Technol., 2019, 109: 20
54 Li X P, Kang C W, Huang H, et al. The role of a low-energy-density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting [J]. Mater. Des., 2014, 63: 407
55 Xie F, Chen Q J, Gao J W. Brittle-ductile transition in laser 3D printing of Fe-based bulk metallic glass composites [J]. Metals, 2019, 9: 78
56 Zhang Y, Liu H S, Mo J Y, et al. Atomic-level crystallization in selective laser melting fabricated Zr-based metallic glasses [J]. Phys. Chem. Chem. Phys., 2019, 21: 12406
57 Zhang Y, Liu H S, Mo J Y, et al. Atomic-scale structural evolution in selective laser melting of Cu50Zr50 metallic glass [J]. Comput. Mater. Sci., 2018, 150: 62
58 Guo S, Wang M, Lin X, et al. Research on the crystallization behavior occurred in the process of preparing bulk metallic glass with selective laser melting [J]. Mater. Res. Express, 2019, 6: 066582
59 Simchi A, Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder [J]. Mater. Sci. Eng., 2003, A359: 119
60 Zhang Y Y, Lin X, Wei L, et al. Influence of powder size on the crystallization behavior during laser solid forming Zr55Cu30Al10Ni5 bulk amorphous alloy [J]. Intermetallics, 2016, 76: 1
61 Zhang B, Li Y T, Bai Q. Defect formation mechanisms in selective laser melting: A review [J]. Chin. J. Mech. Eng., 2017, 30: 515
62 Qiu C L, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting [J]. Acta Mater., 2015, 96: 72
63 Ouyang D. Fabrication, structure and properties of 3D printed amorphous alloys by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2019
63 欧阳迪. 激光选区熔化3D打印非晶合金的制备、结构与性能研究 [D]. 武汉: 华中科技大学, 2019
64 Best J P, Ostergaard H E, Li B S, et al. Fracture and fatigue behaviour of a laser additive manufactured Zr-based bulk metallic glass [J]. Addit. Manuf., 2020, 36: 101416
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.