Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 55-74    DOI: 10.11900/0412.1961.2022.00422
  综述 本期目录 | 过刊浏览 |
选区激光熔化NiTi形状记忆合金研究进展
杨超1(), 卢海洲2(), 马宏伟1, 蔡潍锶1
1.华南理工大学 国家金属材料近净成形工程技术研究中心 广州 510640
2.广东技术师范大学 机电学院 广州 510665
Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting
YANG Chao1(), LU Haizhou2(), MA Hongwei1, CAI Weisi1
1.National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2.School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
引用本文:

杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
Chao YANG, Haizhou LU, Hongwei MA, Weisi CAI. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(1): 55-74.

全文: PDF(6296 KB)   HTML
摘要: 

由于NiTi形状记忆合金(SMAs)具有高反应敏感性和低热导率等物性,导致其初步成形件的后续加工十分困难,作为一种典型的金属增材制造技术,选区激光熔化(SLM)在近净成形复杂几何形状的金属构件方面具有显著优越性,能够有效解决NiTi SMAs冷加工难、加工成本高的问题。为实现SLM NiTi SMAs的工程应用,需厘清其工艺参数-微观结构-功能特性的内在联系,揭示其相转变行为与功能特性变化的机理,建立坚实的理论基础。基于此,本文重点对SLM NiTi SMAs的成形性、相转变行为、微观结构、力学性能和热机械性能的相关研究结果进行了分析与总结。同时,对近来SLM多孔NiTi SMAs的设计及其生物相容性的探索研究进行了阐述。最后,本文展望了SLM NiTi SMAs研究过程中需要重点突破的问题。

关键词 选区激光熔化NiTi形状记忆合金微观结构热机械性能多孔NiTi    
Abstract

The postprocessing/machining of NiTi shape memory alloys (SMAs) is extremely challenging and difficult due to their low thermal conductivity and the high reactivity of ready-made NiTi parts. As a typical metal additive manufacturing technology, selective laser melting (SLM) offers significant advantages and can directly fabricate complex metallic parts, effectively address the problems of cold workability and machinability for NiTi parts. By establishing the relationship between processing parameters, microstructure, functional properties, and revealing the underlying mechanisms for altered phase transformation behavior and functional properties of SLM NiTi SMAs, it can serve as a theoretical foundation for expanding the applications of SLM NiTi SMAs. As a result, this paper comprehensively evaluates the formability, phase transformation behavior, microstructure, mechanical properties, and thermomechanical properties of SLM NiTi SMAs. Additionally, the design of SLM porous NiTi SMAs, as well as their biocompatibility, are discussed. Eventually, the future development trend and critical problems in studying SLM NiTi SMAs are investigated.

Key wordsselective laser melting    NiTi shape memory alloy    microstructure    thermomechanical property    porous NiTi
收稿日期: 2022-08-31     
ZTFLH:  TG146.23  
基金资助:广东省重点领域研发计划项目(2020B090923001);国家自然科学基金项目(U19A2085)
作者简介: 杨超,男,1977 年生,教授
图1  选区激光熔化(SLM) NiTi形状记忆合金(SMAs)的整体研究内容与路径
图2  SLM制备NiTi SMAs的粉末原材料[21~24]
Process parameterP / Wv / (mm·s-1)h / mmt / μmE / (J·mm-3)Ref.
characteristic
High P with high v200-3751000-1400603079-208[26]
25012501203055.5[27-34]
200150040-804042-83[35]
250900-110060-7530123-126[36]
25011001203063[37]
Low P with low v50-120100-30045-1502055-675[9]
7010510030222[23]
1202505040240[24]
40160-280503095-111[36]
60-120150-600753044-267[8,38]
90600903056[39]
1205008030110[40-43]
904141203061[44]
7080-3001003078-292[45-47]
50200-3001203046-69[48]
60300-4801102546-73[49,50]
50, 10012540-2403056-667[51]
110, 120150-3505030210-533[52]
Other1208001103046[53]
50-250250-125080-1203040-125[54]
75-200400-120080-12020-4047-87[55,56]
60-240500803050-200[57]
表1  常用的SLM制备NiTi SMAs的工艺参数[8,9,23,24,26~57]
图3  低功率和低扫描速率条件下能量密度与NiTi SMAs的成形性关系图[9];高功率和高扫描速率条件下得到的NiTi SMAs[26];Eagar-Tsai模型预测的工艺参数与对应的成形质量图[19]
图4  SLM NiTi SMAs中形成缺陷的原因[19]以及能量密度对成形性的影响[22]
图5  相同能量密度(100 J/mm3)下SLM Ni50.6Ti49.4合金的制备态及其在1000℃固溶处理2 h后的DSC曲线[10];功率变化时SLM Ni50.6Ti49.4合金的DSC曲线[15];不同扫描间距下打印态、固溶处理态和时效态Ni51.4Ti48.6合金的DSC曲线[35]
图6  不同扫描间距下SLM Ni50.9Ti49.1合金在熔池不同区域的亚结构、沉淀相和位错的TEM像[16]
图7  热处理后SLM NiTi SMAs的TEM像、STEM像和SAED花样[19,35,47]
图8  压缩条件和拉伸条件下NiTi SMAs的力学性能总结[14,15,19,24,26,27,40~43,45,46,53,55,56,63~75]
图9  相同能量密度[61]和不同扫描间距[62]条件下打印态SLM Ni50.8Ti49.2合金的压缩超弹性行为;不同功率和速率下打印态SLM Ni50.8Ti49.2合金的循环压缩超弹性行为[62]
图10  SLM NiTi SMAs的压缩超弹性[29,35,79]
图11  SLM NiTi SMAs的单向拉伸力学性能和拉伸超弹性[15,19,43,47,80]
NiTi (atomicFeedstockEquipment typeCompressiveRecoveryCycleRef.
fraction / %)stressstrainnumber
MPa%
Ni49.4Ti50.6 + Ni nanoparticlesPre-alloyed powderConcept Laser M2 Cusing8003.52-3.5413[23]
Ni53Ti47Pre-alloyed NiTi powder (15-53 μm) +Eplus-M100T700-18004.0-9.44[24]
coated Ni powder (1.5 μm)
Ni50.6Ti49.4Pre-alloyed powder (15-53 μm)An in-house SLM8005.6-6.710[26]
machine (SLM-150)
Ni50.8Ti49.2Pre-alloyed powder (25-75 μm)3D Systems Phenix10002.64-4.2010[29]
Ni51.4Ti48.6Pre-alloyed powder (30-45 μm)SLM-YZ250600-8502.2-4.610[35]
Ni50.8Ti49.2Pre-alloyed powder (D50 = 50 µm)3D Systems Phenix PXM8002.23-4.5610[51]
Ni50.8Ti49.2Pre-alloyed powder (25-75 μm)3D Systems Phenix8002.29-5.5010[61]
Ni50.8Ti49.2Pre-alloyed powder (25-75 μm)3D Systems Phenix6003.40-5.2010[62]
Ni50.7Ti49.3Pre-alloyed powder (D50 = 37 μm)Solutions 2807003.7-7.410[70]
Ni50.8Ti49.2Pre-alloyed powder (D50 = 50 μm)3D Systems Phenix280-17501.5-5.54[79]
Ni50.8Ti49.2Pre-alloyed powderRenishaw AM400500/9005.5/61[82]
Ni50.8Ti49.2Pre-alloyed powder (25-75 μm)3D Systems Phenix PXM3003.0-3.41[83]
表2  压缩条件下SLM NiTi SMAs的超弹性回复应变总结[23,24,26,29,35,51,61,62,70,79,82,83]
NiTi (atomicFeedstockEquipment typeTensileRecoveryCycle numberRef.
fraction / %)stressstrain
MPa%
NiTiPre-alloyed powderEplus-M100T500-7001.41-2.1410[14]
(15-53 μm)
Ni51.1Ti48.9 andPre-alloyed powder3D Systems ProX DMP 200300-5501.0-4.51 and incremental loading[19]
Ni50.3Ti49.7(D50 = 29 μm)
Ni51.2Ti48.8Pre-alloyed powder3D Systems ProX DMP 200300-4001-6Incremental loading[20]
Ni50.4Ti49.6Pre-alloyed powderConcept Laser M2 Cusing4500.77-2.3120[47]
(D50 = 37 μm)
Ni50.92Ti49.08Pre-alloyed powderConcept Laser Mlab-R100-5000.26-2.25Incremental loading[49]
(D50 = 40.6 μm)
Ni50.8Ti49.2Pre-alloyed powderBLT S210400/5002/41[56]
(15-53 μm)
Ni50-51Ti49-50Pre-alloyed powderRenishaw AM400300-5502-48[72]
表3  拉伸条件下SLM NiTi SMAs的超弹性回复应变总结[14,19,20,47,49,56,72]
图12  NiTi、不锈钢和人体组织的性能对比图;多孔结构的模型图以及SLM制备的多孔NiTi SMAs[37,38,63,90]
图13  不同多孔NiTi SMAs的力学性能与功能特性[37,63,90]
图14  SLM多孔NiTi SMAs的生物相容性[63]
1 Ma J, Karaman I, Noebe R D. High temperature shape memory alloys [J]. Int. Mater. Rev., 2010, 55: 257
doi: 10.1179/095066010X12646898728363
2 Zheng Y F, Liu Y N. Nickel-Titanium Alloy for Engineering[M]. Beijing: Science Press, 2014: 1
2 郑玉峰, Liu Y N. 工程用镍钛合金[M]. 北京: 科学出版社, 2014: 1
3 Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
4 Xiao F, Chen H, Jin X J. Research progress in elastocaloric cooling effect basing on shape memory alloy [J]. Acta Metall. Sin., 2021, 57: 29
4 肖 飞, 陈 宏, 金学军. 形状记忆合金弹热制冷效应的研究现状 [J]. 金属学报, 2021, 57: 29
5 Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review [J]. Prog. Mater. Sci., 2012, 57: 911
doi: 10.1016/j.pmatsci.2011.11.001
6 Oliveira J P, Miranda R M, Braz Fernandes F M. Welding and joining of NiTi shape memory alloys: A review [J]. Prog. Mater. Sci., 2017, 88: 412
doi: 10.1016/j.pmatsci.2017.04.008
7 Ahadi A, Sun Q P. Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction [J]. Acta Mater., 2015, 90: 272
doi: 10.1016/j.actamat.2015.02.024
8 Tan C L, Zou J, Li S, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures [J]. Int. J. Mach. Tools Manuf., 2021, 167: 103764
doi: 10.1016/j.ijmachtools.2021.103764
9 Li S, Hassanin H, Attallah M M, et al. The development of TiNi-based negative Poisson's ratio structure using selective laser melting [J]. Acta Mater., 2016, 105: 75
doi: 10.1016/j.actamat.2015.12.017
10 Wang X B, Speirs M, Kustov S, et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect [J]. Scr. Mater., 2018, 146: 246
doi: 10.1016/j.scriptamat.2017.11.047
11 Han C J, Fang Q H, Shi Y S, et al. Recent advances on high-entropy alloys for 3D printing [J]. Adv. Mater., 2020, 32: 1903855
doi: 10.1002/adma.201903855
12 Lu H Z, Ma H W, Luo X, et al. Influence of laser scanning speed on phase transformation and superelasticity of 4D-printed Ti-Ni shape memory alloys [J]. J. Mech. Eng., 2020, 56(15): 65
doi: 10.3901/JME.2020.15.065
12 卢海洲, 马宏伟, 罗 炫 等. 激光扫描速度对4D打印钛镍形状记忆合金相转变和超弹性的影响 [J]. 机械工程学报, 2020, 56(15): 65
doi: 10.3901/JME.2020.15.065
13 Frenzel J, George E P, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys [J]. Acta Mater., 2010, 58: 3444
doi: 10.1016/j.actamat.2010.02.019
14 Shi G F, Li L X, Yu Z L, et al. The interaction effect of process parameters on the phase transformation behavior and tensile properties in additive manufacturing of Ni-rich NiTi alloy [J]. J. Manuf. Process., 2022, 77: 539
doi: 10.1016/j.jmapro.2022.03.027
15 Wang X B, Yu J Y, Liu J W, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting [J]. Addit. Manuf., 2020, 36: 101545
16 Franco B E, Ma J, Loveall B, et al. A sensory material approach for reducing variability in additively manufactured metal parts [J]. Sci. Rep., 2017, 7: 3604
doi: 10.1038/s41598-017-03499-x pmid: 28620228
17 Zhang B C, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder [J]. J. Mater. Sci. Technol., 2013, 29: 863
doi: 10.1016/j.jmst.2013.05.006
18 Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel-titanium [J]. Mater. Charact., 2014, 94: 189
doi: 10.1016/j.matchar.2014.05.017
19 Xue L, Atli K C, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework [J]. Acta Mater., 2021, 215: 117017
doi: 10.1016/j.actamat.2021.117017
20 Xue L, Atli K C, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity [J]. Acta Mater., 2022, 229: 117781
doi: 10.1016/j.actamat.2022.117781
21 Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders [J]. J. Mater. Process. Technol., 2019, 271: 152
doi: 10.1016/j.jmatprotec.2019.03.025
22 Lu H Z, Ma H W, Cai W S, et al. Altered phase transformation behaviors and enhanced bending shape memory property of NiTi shape memory alloy via selective laser melting [J]. J. Mater. Process. Technol., 2022, 303: 117546
doi: 10.1016/j.jmatprotec.2022.117546
23 Lu H Z, Chen T, Liu L H, et al. Constructing function domains in NiTi shape memory alloys by additive manufacturing [J]. Virtual Phys. Prototyp., 2022, 17: 563
doi: 10.1080/17452759.2022.2053821
24 Shen H, Zhang Q Q, Yang Y, et al. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116: 246
doi: 10.1016/j.jmst.2021.09.067
25 Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
26 Gu D D, Ma C L, Dai D H, et al. Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness [J]. Virtual Phys. Prototyp., 2021, 16: S19
doi: 10.1080/17452759.2021.1892389
27 Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by selective laser melting [A]. Innovative Developments in Virtual and Physical Prototyping [C]. Boca Raton: CRC Press, 2012: 291
28 Meier H, Haberland C, Frenzel J, et al. Selective laser melting of NiTi shape memory components [A]. Innovative Development in Design and Manufacturing [C]. Boca Raton: CRC Press, 2010: 233
29 Saedi S, Turabi A S, Taheri Andani M, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting [J]. J. Alloys Compd., 2016, 677: 204
doi: 10.1016/j.jallcom.2016.03.161
30 Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2017, 68: 224
doi: 10.1016/j.jmbbm.2017.01.047
31 Ravari M R K, Esfahani S N, Andani M T, et al. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures [J]. Smart Mater. Struct., 2016, 25: 025008
32 Hamilton R F, Bimber B A, Taheri Andani M, et al. Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition [J]. J. Mater. Process. Technol., 2017, 250: 55
doi: 10.1016/j.jmatprotec.2017.06.027
33 Farhang B, Ravichander B B, Venturi F, et al. Study on variations of microstructure and metallurgical properties in various heat-affected zones of SLM fabricated nickel-titanium alloy [J]. Mater. Sci. Eng., 2020, A774: 138919
34 Saghaian S E, Amerinatanzi A, Moghaddam N S, et al. Mechanical and shape memory properties of triply periodic minimal surface (TPMS) NiTi structures fabricated by selective laser melting [J]. Biol. Eng. Med., 2018, 3: 1
35 Cao Y X, Zhou X L, Cong D Y, et al. Large tunable elastocaloric effect in additively manufactured Ni-Ti shape memory alloys [J]. Acta Mater., 2020, 194: 178
doi: 10.1016/j.actamat.2020.04.007
36 Dadbakhsh S, Speirs M, Kruth J P, et al. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts [J]. Adv. Eng. Mater., 2014, 16: 1140
doi: 10.1002/adem.201300558
37 Chen W L, Yang Q, Huang S K, et al. Compression behavior of graded NiTi gyroid-structures fabricated by laser powder bed fusion additive manufacturing under monotonic and cyclic loading [J]. JOM, 2021, 73: 4154
doi: 10.1007/s11837-021-04938-x
38 Tan C L, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich Ti-Ni lattice structures: Process optimisation, geometrical integrity, and phase transformations [J]. Int. J. Mach. Tools Manuf., 2019, 141: 19
doi: 10.1016/j.ijmachtools.2019.04.002
39 Bartolomeu F, Costa M M, Alves N, et al. Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2020, 110: 103891
doi: 10.1016/j.jmbbm.2020.103891
40 Xiong Z W, Li M, Hao S J, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material [J]. ACS Appl. Mater. Interfaces, 2021, 13: 39915
doi: 10.1021/acsami.1c11226
41 Zhang Q Q, Hao S J, Liu Y T, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability [J]. Appl. Mater. Today, 2020, 19: 100547
42 Qiu P, Gao P P, Wang S Y, et al. Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect [J]. Corros. Sci., 2020, 175: 108891
doi: 10.1016/j.corsci.2020.108891
43 Xiong Z W, Li Z H, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect [J]. J. Mater. Sci. Technol., 2019, 35: 2238
doi: 10.1016/j.jmst.2019.05.015
44 Yu Z L, Xu Z Z, Guo Y T, et al. Analysis of microstructure, mechanical properties, wear characteristics and corrosion behavior of SLM-NiTi under different process parameters [J]. J. Manuf. Process., 2022, 75: 637
doi: 10.1016/j.jmapro.2022.01.010
45 Lu H Z, Liu L H, Yang C, et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101: 205
doi: 10.1016/j.jmst.2021.06.019
46 Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing [J]. Mater. Sci. Eng., 2019, A763: 138166
47 Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting [J]. Acta Mater., 2021, 219: 117261
doi: 10.1016/j.actamat.2021.117261
48 Khanlari K, Shi Q, Li K F, et al. Effects of printing volumetric energy densities and post-processing treatments on the microstructural properties, phase transformation temperatures and hardness of near-equiatomic NiTinol parts fabricated by a laser powder bed fusion technique [J]. Intermetallics, 2021, 131: 107088
doi: 10.1016/j.intermet.2021.107088
49 Yang Y, Zhan J B, Sun Z Z, et al. Evolution of functional properties realized by increasing laser scanning speed for the selective laser melting fabricated NiTi alloy [J]. J. Alloys Compd., 2019, 804: 220
doi: 10.1016/j.jallcom.2019.06.340
50 Yang Y, Zhan J B, Sui J B, et al. Functionally graded NiTi alloy with exceptional strain-hardening effect fabricated by SLM method [J]. Scr. Mater., 2020, 188: 130
doi: 10.1016/j.scriptamat.2020.07.019
51 Ehsan Saghaian S, Nematollahi M, Toker G, et al. Effect of hatch spacing and laser power on microstructure, texture, and thermomechanical properties of laser powder bed fusion (L-PBF) additively manufactured NiTi [J]. Opt. Laser Technol., 2022, 149: 107680
doi: 10.1016/j.optlastec.2021.107680
52 Gu D D, Ma C L. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites [J]. Appl. Surf. Sci., 2018, 441: 862
doi: 10.1016/j.apsusc.2018.01.317
53 Guo W Q, Sun Z, Yang Y, et al. Study on the junction zone of NiTi shape memory alloy produced by selective laser melting via a stripe scanning strategy [J]. Intermetallics, 2020, 126: 106947
doi: 10.1016/j.intermet.2020.106947
54 Safdel A, Elbestawi M A. New insights on the laser powder bed fusion processing of a NiTi alloy and the role of dynamic restoration mechanisms [J]. J. Alloys Compd., 2021, 885: 160971
doi: 10.1016/j.jallcom.2021.160971
55 Yu Z L, Xu Z Z, Guo Y T, et al. Study on properties of SLM-NiTi shape memory alloy under the same energy density [J]. J. Mater. Res. Technol., 2021, 13: 241
doi: 10.1016/j.jmrt.2021.04.058
56 Yu Z L, Xu Z Z, Liu R Y, et al. Prediction of SLM-NiTi transition temperatures based on improved Levenberg-Marquardt algorithm [J]. J. Mater. Res. Technol., 2021, 15: 3349
doi: 10.1016/j.jmrt.2021.09.149
57 Ye D, Li S F, Misra R D K, et al. Ni-loss compensation and thermomechanical property recovery of 3D printed NiTi alloys by pre-coating Ni on NiTi powder [J]. Addit. Manuf., 2021, 47: 102344
58 Oliveira J P, Cavaleiro A J, Schell N, et al. Effects of laser processing on the transformation characteristics of NiTi: A contribute to additive manufacturing [J]. Scr. Mater., 2018, 152: 122
doi: 10.1016/j.scriptamat.2018.04.024
59 Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion [J]. Addit. Manuf., 2016, 12: 178
60 Speirs M, Wang X, Van Baelen S, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM [J]. Shape Mem. Superelast., 2016, 2: 310
61 Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi [J]. Acta Mater., 2018, 144: 552
doi: 10.1016/j.actamat.2017.10.072
62 Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment [J]. Sci. Rep., 2019, 9: 41
doi: 10.1038/s41598-018-36641-4 pmid: 30631084
63 Lu H Z, Ma H W, Luo X, et al. Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting [J]. J. Mater. Res. Technol., 2021, 15: 6797
doi: 10.1016/j.jmrt.2021.11.112
64 Taheri Andani M, Haberland C, Walker J M, et al. Achieving biocompatible stiffness in NiTi through additive manufacturing [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2661
doi: 10.1177/1045389X16641199
65 Gan J, Duan L C, Li F, et al. Effect of laser energy density on the evolution of Ni4Ti3 precipitate and property of NiTi shape memory alloys prepared by selective laser melting [J]. J. Alloys Compd., 2021, 869: 159338
doi: 10.1016/j.jallcom.2021.159338
66 Yang Y, Wu Z G, Shen B Y, et al. Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy [J]. J. Mater. Process. Technol., 2021, 296: 117177
doi: 10.1016/j.jmatprotec.2021.117177
67 Yi X Y, Shen G J, Meng X L, et al. The higher compressive strength (TiB + La2O3)/Ti-Ni shape memory alloy composite with the larger recoverable strain [J]. Compos. Commun., 2021, 23: 100583
doi: 10.1016/j.coco.2020.100583
68 Farvizi M, Akbarpour M R, Ahn D H, et al. Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles [J]. J. Alloys Compd., 2016, 688: 803
doi: 10.1016/j.jallcom.2016.06.299
69 Zhou Q, Hayat M D, Chen G, et al. Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties [J]. Mater. Sci. Eng., 2019, A744: 290
70 Ren Q H, Chen C Y, Lu Z J, et al. Effect of a constant laser energy density on the evolution of microstructure and mechanical properties of NiTi shape memory alloy fabricated by laser powder bed fusion [J]. Opt. Laser Technol., 2022, 152: 108182
doi: 10.1016/j.optlastec.2022.108182
71 Gustmann T, Gutmann F, Wenz F, et al. Properties of a superelastic NiTi shape memory alloy using laser powder bed fusion and adaptive scanning strategies [J]. Prog. Addit. Manuf., 2020, 5: 11
doi: 10.1007/s40964-020-00118-6
72 McCue I D, Valentino G M, Trigg D B, et al. Controlled shape-morphing metallic components for deployable structures [J]. Mater. Des., 2021, 208: 109935
doi: 10.1016/j.matdes.2021.109935
73 Lv J R, Shen H Y, Fu J Z. Fabrication of multi-functional Ni-Ti alloys by laser powder bed fusion [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 357
doi: 10.1007/s00170-021-08039-6
74 Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy [J]. Materialia, 2019, 6: 100305
doi: 10.1016/j.mtla.2019.100305
75 Shayesteh Moghaddam N, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting [J]. Mater. Sci. Eng., 2018, A724: 220
76 Jiang F, Liu Y N, Yang H, et al. Effect of ageing treatment on the deformation behaviour of Ti-50.9at.%Ni [J]. Acta Mater., 2009, 57: 4773
doi: 10.1016/j.actamat.2009.06.059
77 Miyazaki S, Kohiyama Y, Otsuka K, et al. Effects of several factors on the ductility of the Ti-Ni alloy [J]. Mater. Sci. Forum., 1991, 56-58: 765
doi: 10.4028/www.scientific.net/MSF.56-58.765
78 Pushin V G, Valiev R Z, Zhu Y T, et al. Effect of severe plastic deformation on the behavior of Ti-Ni shape memory alloys [J]. Mater. Trans., 2006, 47: 694
doi: 10.2320/matertrans.47.694
79 Saedi S, Turabi A S, Andani M T, et al. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys [J]. Mater. Sci. Eng., 2017, A686: 1
80 Sam J, Franco B, Ma J, et al. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys [J]. Scr. Mater., 2018, 146: 164
doi: 10.1016/j.scriptamat.2017.11.013
81 Ahadi A, Sun Q P. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi [J]. Acta Mater., 2014, 76: 186
doi: 10.1016/j.actamat.2014.05.007
82 Biffi C A, Fiocchi J, Valenza F, et al. Selective laser melting of Ni-Ti shape memory alloy: Processability, microstructure, and superelasticity [J]. Shape Mem. Superelast., 2020, 6: 342
83 Saedi S, Turabi A S, Andani M T, et al. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting [J]. Smart Mater. Struct., 2016, 25: 035005
84 Walker J M, Haberland C, Taheri Andani M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2653
doi: 10.1177/1045389X16635848
85 Dadbakhsh S, Vrancken B, Kruth J P, et al. Texture and anisotropy in selective laser melting of NiTi alloy [J]. Mater. Sci. Eng., 2016, A650: 225
86 Miyazaki S. My experience with Ti-Ni-based and Ti-based shape memory alloys [J]. Shape Mem. Superelast., 2017, 3: 279
87 Zhang L C, Chen L Y. A review on biomedical titanium Alloys: Recent progress and prospect [J]. Adv. Eng. Mater., 2019, 21: 1801215
doi: 10.1002/adem.201801215
88 Rho J Y, Ashman R B, Turner C H. Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements [J]. J. Biomech., 1993, 26: 111
pmid: 8429054
89 Khanlari K, Shi Q, Yan X C, et al. Printing of NiTinol parts with characteristics respecting the general microstructural, compositional and mechanical requirements of bone replacement implants [J]. Mater. Sci. Eng., 2022, A839: 142839
90 Yang Q, Sun K H, Yang C, et al. Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 858: 157674
doi: 10.1016/j.jallcom.2020.157674
91 Chen T, Cai W S, Liu Z, et al. In-situ dual-deoxidation design of advanced titanium matrix composites by pressureless sintering [J]. Composites, 2022, 244B: 110202
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[7] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[8] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[9] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[14] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[15] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.