|
|
选区激光熔化NiTi形状记忆合金研究进展 |
杨超1( ), 卢海洲2( ), 马宏伟1, 蔡潍锶1 |
1.华南理工大学 国家金属材料近净成形工程技术研究中心 广州 510640 2.广东技术师范大学 机电学院 广州 510665 |
|
Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting |
YANG Chao1( ), LU Haizhou2( ), MA Hongwei1, CAI Weisi1 |
1.National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China 2.School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China |
引用本文:
杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
Chao YANG,
Haizhou LU,
Hongwei MA,
Weisi CAI.
Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(1): 55-74.
1 |
Ma J, Karaman I, Noebe R D. High temperature shape memory alloys [J]. Int. Mater. Rev., 2010, 55: 257
doi: 10.1179/095066010X12646898728363
|
2 |
Zheng Y F, Liu Y N. Nickel-Titanium Alloy for Engineering[M]. Beijing: Science Press, 2014: 1
|
2 |
郑玉峰, Liu Y N. 工程用镍钛合金[M]. 北京: 科学出版社, 2014: 1
|
3 |
Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
doi: 10.1016/j.matdes.2013.11.084
|
4 |
Xiao F, Chen H, Jin X J. Research progress in elastocaloric cooling effect basing on shape memory alloy [J]. Acta Metall. Sin., 2021, 57: 29
|
4 |
肖 飞, 陈 宏, 金学军. 形状记忆合金弹热制冷效应的研究现状 [J]. 金属学报, 2021, 57: 29
|
5 |
Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review [J]. Prog. Mater. Sci., 2012, 57: 911
doi: 10.1016/j.pmatsci.2011.11.001
|
6 |
Oliveira J P, Miranda R M, Braz Fernandes F M. Welding and joining of NiTi shape memory alloys: A review [J]. Prog. Mater. Sci., 2017, 88: 412
doi: 10.1016/j.pmatsci.2017.04.008
|
7 |
Ahadi A, Sun Q P. Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction [J]. Acta Mater., 2015, 90: 272
doi: 10.1016/j.actamat.2015.02.024
|
8 |
Tan C L, Zou J, Li S, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures [J]. Int. J. Mach. Tools Manuf., 2021, 167: 103764
doi: 10.1016/j.ijmachtools.2021.103764
|
9 |
Li S, Hassanin H, Attallah M M, et al. The development of TiNi-based negative Poisson's ratio structure using selective laser melting [J]. Acta Mater., 2016, 105: 75
doi: 10.1016/j.actamat.2015.12.017
|
10 |
Wang X B, Speirs M, Kustov S, et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect [J]. Scr. Mater., 2018, 146: 246
doi: 10.1016/j.scriptamat.2017.11.047
|
11 |
Han C J, Fang Q H, Shi Y S, et al. Recent advances on high-entropy alloys for 3D printing [J]. Adv. Mater., 2020, 32: 1903855
doi: 10.1002/adma.201903855
|
12 |
Lu H Z, Ma H W, Luo X, et al. Influence of laser scanning speed on phase transformation and superelasticity of 4D-printed Ti-Ni shape memory alloys [J]. J. Mech. Eng., 2020, 56(15): 65
doi: 10.3901/JME.2020.15.065
|
12 |
卢海洲, 马宏伟, 罗 炫 等. 激光扫描速度对4D打印钛镍形状记忆合金相转变和超弹性的影响 [J]. 机械工程学报, 2020, 56(15): 65
doi: 10.3901/JME.2020.15.065
|
13 |
Frenzel J, George E P, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys [J]. Acta Mater., 2010, 58: 3444
doi: 10.1016/j.actamat.2010.02.019
|
14 |
Shi G F, Li L X, Yu Z L, et al. The interaction effect of process parameters on the phase transformation behavior and tensile properties in additive manufacturing of Ni-rich NiTi alloy [J]. J. Manuf. Process., 2022, 77: 539
doi: 10.1016/j.jmapro.2022.03.027
|
15 |
Wang X B, Yu J Y, Liu J W, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting [J]. Addit. Manuf., 2020, 36: 101545
|
16 |
Franco B E, Ma J, Loveall B, et al. A sensory material approach for reducing variability in additively manufactured metal parts [J]. Sci. Rep., 2017, 7: 3604
doi: 10.1038/s41598-017-03499-x
pmid: 28620228
|
17 |
Zhang B C, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder [J]. J. Mater. Sci. Technol., 2013, 29: 863
doi: 10.1016/j.jmst.2013.05.006
|
18 |
Bormann T, Müller B, Schinhammer M, et al. Microstructure of selective laser melted nickel-titanium [J]. Mater. Charact., 2014, 94: 189
doi: 10.1016/j.matchar.2014.05.017
|
19 |
Xue L, Atli K C, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework [J]. Acta Mater., 2021, 215: 117017
doi: 10.1016/j.actamat.2021.117017
|
20 |
Xue L, Atli K C, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity [J]. Acta Mater., 2022, 229: 117781
doi: 10.1016/j.actamat.2022.117781
|
21 |
Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders [J]. J. Mater. Process. Technol., 2019, 271: 152
doi: 10.1016/j.jmatprotec.2019.03.025
|
22 |
Lu H Z, Ma H W, Cai W S, et al. Altered phase transformation behaviors and enhanced bending shape memory property of NiTi shape memory alloy via selective laser melting [J]. J. Mater. Process. Technol., 2022, 303: 117546
doi: 10.1016/j.jmatprotec.2022.117546
|
23 |
Lu H Z, Chen T, Liu L H, et al. Constructing function domains in NiTi shape memory alloys by additive manufacturing [J]. Virtual Phys. Prototyp., 2022, 17: 563
doi: 10.1080/17452759.2022.2053821
|
24 |
Shen H, Zhang Q Q, Yang Y, et al. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116: 246
doi: 10.1016/j.jmst.2021.09.067
|
25 |
Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
|
26 |
Gu D D, Ma C L, Dai D H, et al. Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness [J]. Virtual Phys. Prototyp., 2021, 16: S19
doi: 10.1080/17452759.2021.1892389
|
27 |
Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by selective laser melting [A]. Innovative Developments in Virtual and Physical Prototyping [C]. Boca Raton: CRC Press, 2012: 291
|
28 |
Meier H, Haberland C, Frenzel J, et al. Selective laser melting of NiTi shape memory components [A]. Innovative Development in Design and Manufacturing [C]. Boca Raton: CRC Press, 2010: 233
|
29 |
Saedi S, Turabi A S, Taheri Andani M, et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting [J]. J. Alloys Compd., 2016, 677: 204
doi: 10.1016/j.jallcom.2016.03.161
|
30 |
Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2017, 68: 224
doi: 10.1016/j.jmbbm.2017.01.047
|
31 |
Ravari M R K, Esfahani S N, Andani M T, et al. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures [J]. Smart Mater. Struct., 2016, 25: 025008
|
32 |
Hamilton R F, Bimber B A, Taheri Andani M, et al. Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition [J]. J. Mater. Process. Technol., 2017, 250: 55
doi: 10.1016/j.jmatprotec.2017.06.027
|
33 |
Farhang B, Ravichander B B, Venturi F, et al. Study on variations of microstructure and metallurgical properties in various heat-affected zones of SLM fabricated nickel-titanium alloy [J]. Mater. Sci. Eng., 2020, A774: 138919
|
34 |
Saghaian S E, Amerinatanzi A, Moghaddam N S, et al. Mechanical and shape memory properties of triply periodic minimal surface (TPMS) NiTi structures fabricated by selective laser melting [J]. Biol. Eng. Med., 2018, 3: 1
|
35 |
Cao Y X, Zhou X L, Cong D Y, et al. Large tunable elastocaloric effect in additively manufactured Ni-Ti shape memory alloys [J]. Acta Mater., 2020, 194: 178
doi: 10.1016/j.actamat.2020.04.007
|
36 |
Dadbakhsh S, Speirs M, Kruth J P, et al. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts [J]. Adv. Eng. Mater., 2014, 16: 1140
doi: 10.1002/adem.201300558
|
37 |
Chen W L, Yang Q, Huang S K, et al. Compression behavior of graded NiTi gyroid-structures fabricated by laser powder bed fusion additive manufacturing under monotonic and cyclic loading [J]. JOM, 2021, 73: 4154
doi: 10.1007/s11837-021-04938-x
|
38 |
Tan C L, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich Ti-Ni lattice structures: Process optimisation, geometrical integrity, and phase transformations [J]. Int. J. Mach. Tools Manuf., 2019, 141: 19
doi: 10.1016/j.ijmachtools.2019.04.002
|
39 |
Bartolomeu F, Costa M M, Alves N, et al. Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2020, 110: 103891
doi: 10.1016/j.jmbbm.2020.103891
|
40 |
Xiong Z W, Li M, Hao S J, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material [J]. ACS Appl. Mater. Interfaces, 2021, 13: 39915
doi: 10.1021/acsami.1c11226
|
41 |
Zhang Q Q, Hao S J, Liu Y T, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability [J]. Appl. Mater. Today, 2020, 19: 100547
|
42 |
Qiu P, Gao P P, Wang S Y, et al. Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect [J]. Corros. Sci., 2020, 175: 108891
doi: 10.1016/j.corsci.2020.108891
|
43 |
Xiong Z W, Li Z H, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect [J]. J. Mater. Sci. Technol., 2019, 35: 2238
doi: 10.1016/j.jmst.2019.05.015
|
44 |
Yu Z L, Xu Z Z, Guo Y T, et al. Analysis of microstructure, mechanical properties, wear characteristics and corrosion behavior of SLM-NiTi under different process parameters [J]. J. Manuf. Process., 2022, 75: 637
doi: 10.1016/j.jmapro.2022.01.010
|
45 |
Lu H Z, Liu L H, Yang C, et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101: 205
doi: 10.1016/j.jmst.2021.06.019
|
46 |
Lu H Z, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing [J]. Mater. Sci. Eng., 2019, A763: 138166
|
47 |
Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting [J]. Acta Mater., 2021, 219: 117261
doi: 10.1016/j.actamat.2021.117261
|
48 |
Khanlari K, Shi Q, Li K F, et al. Effects of printing volumetric energy densities and post-processing treatments on the microstructural properties, phase transformation temperatures and hardness of near-equiatomic NiTinol parts fabricated by a laser powder bed fusion technique [J]. Intermetallics, 2021, 131: 107088
doi: 10.1016/j.intermet.2021.107088
|
49 |
Yang Y, Zhan J B, Sun Z Z, et al. Evolution of functional properties realized by increasing laser scanning speed for the selective laser melting fabricated NiTi alloy [J]. J. Alloys Compd., 2019, 804: 220
doi: 10.1016/j.jallcom.2019.06.340
|
50 |
Yang Y, Zhan J B, Sui J B, et al. Functionally graded NiTi alloy with exceptional strain-hardening effect fabricated by SLM method [J]. Scr. Mater., 2020, 188: 130
doi: 10.1016/j.scriptamat.2020.07.019
|
51 |
Ehsan Saghaian S, Nematollahi M, Toker G, et al. Effect of hatch spacing and laser power on microstructure, texture, and thermomechanical properties of laser powder bed fusion (L-PBF) additively manufactured NiTi [J]. Opt. Laser Technol., 2022, 149: 107680
doi: 10.1016/j.optlastec.2021.107680
|
52 |
Gu D D, Ma C L. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites [J]. Appl. Surf. Sci., 2018, 441: 862
doi: 10.1016/j.apsusc.2018.01.317
|
53 |
Guo W Q, Sun Z, Yang Y, et al. Study on the junction zone of NiTi shape memory alloy produced by selective laser melting via a stripe scanning strategy [J]. Intermetallics, 2020, 126: 106947
doi: 10.1016/j.intermet.2020.106947
|
54 |
Safdel A, Elbestawi M A. New insights on the laser powder bed fusion processing of a NiTi alloy and the role of dynamic restoration mechanisms [J]. J. Alloys Compd., 2021, 885: 160971
doi: 10.1016/j.jallcom.2021.160971
|
55 |
Yu Z L, Xu Z Z, Guo Y T, et al. Study on properties of SLM-NiTi shape memory alloy under the same energy density [J]. J. Mater. Res. Technol., 2021, 13: 241
doi: 10.1016/j.jmrt.2021.04.058
|
56 |
Yu Z L, Xu Z Z, Liu R Y, et al. Prediction of SLM-NiTi transition temperatures based on improved Levenberg-Marquardt algorithm [J]. J. Mater. Res. Technol., 2021, 15: 3349
doi: 10.1016/j.jmrt.2021.09.149
|
57 |
Ye D, Li S F, Misra R D K, et al. Ni-loss compensation and thermomechanical property recovery of 3D printed NiTi alloys by pre-coating Ni on NiTi powder [J]. Addit. Manuf., 2021, 47: 102344
|
58 |
Oliveira J P, Cavaleiro A J, Schell N, et al. Effects of laser processing on the transformation characteristics of NiTi: A contribute to additive manufacturing [J]. Scr. Mater., 2018, 152: 122
doi: 10.1016/j.scriptamat.2018.04.024
|
59 |
Lee Y S, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion [J]. Addit. Manuf., 2016, 12: 178
|
60 |
Speirs M, Wang X, Van Baelen S, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM [J]. Shape Mem. Superelast., 2016, 2: 310
|
61 |
Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi [J]. Acta Mater., 2018, 144: 552
doi: 10.1016/j.actamat.2017.10.072
|
62 |
Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment [J]. Sci. Rep., 2019, 9: 41
doi: 10.1038/s41598-018-36641-4
pmid: 30631084
|
63 |
Lu H Z, Ma H W, Luo X, et al. Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting [J]. J. Mater. Res. Technol., 2021, 15: 6797
doi: 10.1016/j.jmrt.2021.11.112
|
64 |
Taheri Andani M, Haberland C, Walker J M, et al. Achieving biocompatible stiffness in NiTi through additive manufacturing [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2661
doi: 10.1177/1045389X16641199
|
65 |
Gan J, Duan L C, Li F, et al. Effect of laser energy density on the evolution of Ni4Ti3 precipitate and property of NiTi shape memory alloys prepared by selective laser melting [J]. J. Alloys Compd., 2021, 869: 159338
doi: 10.1016/j.jallcom.2021.159338
|
66 |
Yang Y, Wu Z G, Shen B Y, et al. Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy [J]. J. Mater. Process. Technol., 2021, 296: 117177
doi: 10.1016/j.jmatprotec.2021.117177
|
67 |
Yi X Y, Shen G J, Meng X L, et al. The higher compressive strength (TiB + La2O3)/Ti-Ni shape memory alloy composite with the larger recoverable strain [J]. Compos. Commun., 2021, 23: 100583
doi: 10.1016/j.coco.2020.100583
|
68 |
Farvizi M, Akbarpour M R, Ahn D H, et al. Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles [J]. J. Alloys Compd., 2016, 688: 803
doi: 10.1016/j.jallcom.2016.06.299
|
69 |
Zhou Q, Hayat M D, Chen G, et al. Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties [J]. Mater. Sci. Eng., 2019, A744: 290
|
70 |
Ren Q H, Chen C Y, Lu Z J, et al. Effect of a constant laser energy density on the evolution of microstructure and mechanical properties of NiTi shape memory alloy fabricated by laser powder bed fusion [J]. Opt. Laser Technol., 2022, 152: 108182
doi: 10.1016/j.optlastec.2022.108182
|
71 |
Gustmann T, Gutmann F, Wenz F, et al. Properties of a superelastic NiTi shape memory alloy using laser powder bed fusion and adaptive scanning strategies [J]. Prog. Addit. Manuf., 2020, 5: 11
doi: 10.1007/s40964-020-00118-6
|
72 |
McCue I D, Valentino G M, Trigg D B, et al. Controlled shape-morphing metallic components for deployable structures [J]. Mater. Des., 2021, 208: 109935
doi: 10.1016/j.matdes.2021.109935
|
73 |
Lv J R, Shen H Y, Fu J Z. Fabrication of multi-functional Ni-Ti alloys by laser powder bed fusion [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 357
doi: 10.1007/s00170-021-08039-6
|
74 |
Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy [J]. Materialia, 2019, 6: 100305
doi: 10.1016/j.mtla.2019.100305
|
75 |
Shayesteh Moghaddam N, Saghaian S E, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting [J]. Mater. Sci. Eng., 2018, A724: 220
|
76 |
Jiang F, Liu Y N, Yang H, et al. Effect of ageing treatment on the deformation behaviour of Ti-50.9at.%Ni [J]. Acta Mater., 2009, 57: 4773
doi: 10.1016/j.actamat.2009.06.059
|
77 |
Miyazaki S, Kohiyama Y, Otsuka K, et al. Effects of several factors on the ductility of the Ti-Ni alloy [J]. Mater. Sci. Forum., 1991, 56-58: 765
doi: 10.4028/www.scientific.net/MSF.56-58.765
|
78 |
Pushin V G, Valiev R Z, Zhu Y T, et al. Effect of severe plastic deformation on the behavior of Ti-Ni shape memory alloys [J]. Mater. Trans., 2006, 47: 694
doi: 10.2320/matertrans.47.694
|
79 |
Saedi S, Turabi A S, Andani M T, et al. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys [J]. Mater. Sci. Eng., 2017, A686: 1
|
80 |
Sam J, Franco B, Ma J, et al. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys [J]. Scr. Mater., 2018, 146: 164
doi: 10.1016/j.scriptamat.2017.11.013
|
81 |
Ahadi A, Sun Q P. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi [J]. Acta Mater., 2014, 76: 186
doi: 10.1016/j.actamat.2014.05.007
|
82 |
Biffi C A, Fiocchi J, Valenza F, et al. Selective laser melting of Ni-Ti shape memory alloy: Processability, microstructure, and superelasticity [J]. Shape Mem. Superelast., 2020, 6: 342
|
83 |
Saedi S, Turabi A S, Andani M T, et al. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting [J]. Smart Mater. Struct., 2016, 25: 035005
|
84 |
Walker J M, Haberland C, Taheri Andani M, et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts [J]. J. Intell. Mater. Syst. Struct., 2016, 27: 2653
doi: 10.1177/1045389X16635848
|
85 |
Dadbakhsh S, Vrancken B, Kruth J P, et al. Texture and anisotropy in selective laser melting of NiTi alloy [J]. Mater. Sci. Eng., 2016, A650: 225
|
86 |
Miyazaki S. My experience with Ti-Ni-based and Ti-based shape memory alloys [J]. Shape Mem. Superelast., 2017, 3: 279
|
87 |
Zhang L C, Chen L Y. A review on biomedical titanium Alloys: Recent progress and prospect [J]. Adv. Eng. Mater., 2019, 21: 1801215
doi: 10.1002/adem.201801215
|
88 |
Rho J Y, Ashman R B, Turner C H. Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements [J]. J. Biomech., 1993, 26: 111
pmid: 8429054
|
89 |
Khanlari K, Shi Q, Yan X C, et al. Printing of NiTinol parts with characteristics respecting the general microstructural, compositional and mechanical requirements of bone replacement implants [J]. Mater. Sci. Eng., 2022, A839: 142839
|
90 |
Yang Q, Sun K H, Yang C, et al. Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 858: 157674
doi: 10.1016/j.jallcom.2020.157674
|
91 |
Chen T, Cai W S, Liu Z, et al. In-situ dual-deoxidation design of advanced titanium matrix composites by pressureless sintering [J]. Composites, 2022, 244B: 110202
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|