Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 439-452    DOI: 10.11900/0412.1961.2020.00441
  综述 本期目录 | 过刊浏览 |
非晶合金的回春行为
潘杰(), 段峰辉
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Rejuvenation Behaviors in Metallic Glasses
PAN Jie(), DUAN Fenghui
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
Jie PAN, Fenghui DUAN. Rejuvenation Behaviors in Metallic Glasses[J]. Acta Metall Sin, 2021, 57(4): 439-452.

全文: PDF(1700 KB)   HTML
摘要: 

非晶合金兼具金属和玻璃、固体和液体特性,自被发现以来凭借其独特结构和优异性能成为凝聚态物理与材料科学领域的前沿热点。作为一种亚稳态材料,非晶合金具有向更低能量状态转变的趋势,称为老化或结构弛豫,此过程往往伴随着室温变形能力的恶化。作为结构弛豫的逆过程,回春是指非晶合金由低能态向高能态转变的过程。回春处理大大拓展了非晶合金的能量范围,这不仅能显著改善非晶合金室温变形能力,也为研究非晶合金的原子结构、玻璃转变和变形机理提供了新的机遇。本文简要综述了非晶合金回春的方法,回春行为对微观结构、力学性能和功能特性的影响,并对非晶合金回春行为的研究进行了简单展望。

关键词 非晶合金回春能量状态微观结构变形行为    
Abstract

Metallic glasses (MGs) are one of the most attractive topics in the field of condensed physics and materials science because of their unique structure and excellent properties. As a metastable material, MGs tend to present a transition toward a more stable low-energy state under applied stress or high-temperature, known as aging or structural relaxation, accompanied by a decrease in deformability at room temperature. Rejuvenation of MGs is a converse process of aging/relaxation, which transforms the materials to their previous and higher-energy states. Rejuvenation greatly expands the energy range of MGs, which not only significantly improves the deformation capability of MGs, but also provides a new opportunity to explore the atomic structure, glass transition, and deformation mechanisms of MGs. This article reviews the recent progress in the study of rejuvenation, including the methods of rejuvenation of MGs, the effect of rejuvenation behavior on microstructures, mechanical properties, and functional characteristics. Finally, a brief outlook on the study of the rejuvenation behavior of MGs is presented.

Key wordsmetallic glass    rejuvenation    energy state    microstructure    deformation behavior
收稿日期: 2020-11-02     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金项目(52022100);中国科学院青年创新促进会项目(2020194)
图1  非晶合金的结构弛豫和回春行为示意图
图2  非晶合金非均匀变形后结构示意图
图3  三维应力状态压缩法实现非晶合金的剧烈回春[63](a) triaxial stress state was introduced in a circumferential notched BMG(b) DSC traces of as-cast and notched BMGs with 40% plastic strain
图4  铸态和回春态Zr64.13Cu15.75Ni10.12Al10非晶合金的径向分布函数(RDF)[75]
图5  回春态锆基块体非晶合金的加工硬化行为[75](a) four engineering stress-strain curves for uniaxial compression, corresponding to three unloading-reloading cycles of the rejuvenated sample (Inset, true stress-true strain curves of a rejuvenated and as-cast samples)(b, c) scanning electron micrographs of as-cast (b) and rejuvenated (c) samples
图6  2种能量状态的铁基非晶合金粉降解偶氮燃料性能[102](a) the appearance and color of the Azo Dye Direct Blue 6 solution before and after the treatment by the G-ZVI powder(b, c) the changes of UV absorption spectra along with the treatment by GA and BM powders, respectively(d) the normalized peak intensity at 580 nm as function of treatment time for three different powders (The treatments were performed at room temperature)
1 Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869
2 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
3 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
4 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
5 Greer A L. Metallic glasses...on the threshold [J]. Mater. Today, 2009, 12: 14
6 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
7 Turnbull D, Cohen M H. Free-volume model of the amorphous phase: Glass transition [J]. J. Chem. Phys., 1961, 34: 120
8 Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall., 1977, 25: 407
9 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
10 Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410: 259
11 Sun Y H, Concustell A, Greer A L. Thermomechanical processing of metallic glasses: Extending the range of the glassy state [J]. Nat. Rev. Mater., 2016, 1: 16039
12 Parisi G, Sciortino F. Structural glasses: Flying to the bottom [J]. Nat. Mater., 2013, 12: 94
13 Tong Y, Iwashita T, Dmowski W, et al. Structural rejuvenation in bulk metallic glasses [J]. Acta Mater., 2015, 86: 240
14 Ketov S V, Sun Y H, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain [J]. Nature, 2015, 524: 200
15 Hufnagel T C. Cryogenic rejuvenation [J]. Nat. Mater., 2015, 14: 867
16 Guo W, Saida J, Zhao M, et al. Non-thermal crystallization process in heterogeneous metallic glass upon deep cryogenic cycling treatment [J]. J. Mater. Sci., 2019, 54: 8778
17 Kang S J, Cao Q P, Liu J, et al. Intermediate structural state for maximizing the rejuvenation effect in metallic glass via thermo-cycling treatment [J]. J. Alloys Compd., 2019, 795: 493
18 Guo W, Saida J, Zhao M, et al. Unconspicuous rejuvenation of a Pd-based metallic glass upon deep cryogenic cycling treatment [J]. Mater. Sci. Eng., 2019, A759: 59
19 Sohrabi S, Ri M C, Jiang H Y, et al. Prominent role of chemical heterogeneity on cryogenic rejuvenation and thermomechanical properties of La-Al-Ni metallic glass [J]. Intermetallics, 2019, 111: 106497
20 Guo W, Shao Y M, Saida J, et al. Rejuvenation and plasticization of Zr-based bulk metallic glass with various Ta content upon deep cryogenic cycling [J]. J. Alloys Compd., 2019, 795: 314
21 Guo W, Saida J, Zhao M, et al. Rejuvenation of Zr-based bulk metallic glass matrix composite upon deep cryogenic cycling [J]. Mater. Lett., 2019, 247: 135
22 Gu J L, Luan H W, Zhao S F, et al. Unique energy-storage behavior related to structural heterogeneity in high-entropy metallic glass [J]. Mater. Sci. Eng., 2020, A786: 139417
23 Ketov S V, Trifonov A S, Ivanov Y P, et al. On cryothermal cycling as a method for inducing structural changes in metallic glasses [J]. NPG Asia Mater., 2018, 10: 137
24 Liu W H, Sun B A, Gleiter H, et al. Nanoscale structural evolution and anomalous mechanical response of nanoglasses by cryogenic thermal cycling [J]. Nano Lett., 2018, 18: 4188
25 Li B S, Xie S H, Kruzic J J. Toughness enhancement and heterogeneous softening of a cryogenically cycled Zr-Cu-Ni-Al-Nb bulk metallic glass [J]. Acta Mater., 2019, 176: 278
26 Saida J, Yamada R, Wakeda M. Recovery of less relaxed state in Zr-Al-Ni-Cu bulk metallic glass annealed above glass transition temperature [J]. Appl. Phys. Lett., 2013, 103: 221910
27 Wakeda M, Saida J, Li J, et al. Controlled rejuvenation of amorphous metals with thermal processing [J]. Sci. Rep., 2015, 5: 10545
28 Küchemann S, Derlet P M, Liu C Y, et al. Energy storage in metallic glasses via flash annealing [J]. Adv. Funct. Mater., 2018, 28: 1805385
29 Kosiba K, Şopu D, Scudino S, et al. Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding [J]. Int. J. Plast., 2019, 119: 156
30 Xiao Q R, Huang L P, Shi Y F. Suppression of shear banding in amorphous ZrCuAl nanopillars by irradiation [J]. J. Appl. Phys., 2013, 113: 083514
31 Raghavan R, Boopathy K, Ghisleni R, et al. Ion irradiation enhances the mechanical performance of metallic glasses [J]. Scr. Mater., 2010, 62: 462
32 Heo J, Kim S, Ryu S, et al. Delocalized plastic flow in proton-irradiated monolithic metallic glasses [J]. Sci. Rep., 2016, 6: 23244
33 Sun K, Wang G, Wang Y W, et al. Structural rejuvenation and relaxation of a metallic glass induced by ion irradiation [J]. Scr. Mater., 2020, 180: 34
34 Magagnosc D J, Kumar G, Schroers J, et al. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires [J]. Acta Mater., 2014, 74: 165
35 Bian X L, Wang G, Chen H C, et al. Manipulation of free volumes in a metallic glass through Xe-ion irradiation [J]. Acta Mater., 2016, 106: 66
36 Fu C C, Dalla Torre J, Willaime F, et al. Multiscale modelling of defect kinetics in irradiated iron [J]. Nat. Mater., 2005, 4: 68
37 Baumer R E, Demkowicz M J. Radiation response of amorphous metal alloys: Subcascades, thermal spikes and super-quenched zones [J]. Acta Mater., 2015, 83: 419
38 Zhao L, Chan K C, Chen S H, et al. Tunable tensile ductility of metallic glasses with partially rejuvenated amorphous structures [J]. Acta Mater., 2019, 169: 122
39 Wang C, Yang Z Z, Ma T, et al. High stored energy of metallic glasses induced by high pressure [J]. Appl. Phys. Lett., 2017, 110: 111901
40 Liu M, Jiang H Y, Liu X Z, et al. Energy state and properties controlling of metallic glasses by surface rejuvenation [J]. Intermetallics, 2019, 112: 106549
41 Küchemann S, Maaß R. Gamma relaxation in bulk metallic glasses [J]. Scr. Mater., 2017, 137: 5
42 Greer A L, Sun Y H. Stored energy in metallic glasses due to strains within the elastic limit [J]. Philos. Mag., 2016, 96: 1643
43 Park K W, Lee C M, Wakeda M, et al. Elastostatically induced structural disordering in amorphous alloys [J]. Acta Mater., 2008, 56: 5440
44 Lee J C. Calorimetric study of β-relaxation in an amorphous alloy: An experimental technique for measuring the activation energy for shear transformation [J]. Intermetallics, 2014, 44: 116
45 Ross P, Küchemann S, Derlet P M, et al. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass [J]. Acta Mater., 2017, 138: 111
46 Wang Y M, Zhang M, Liu L. Mechanical annealing in the homogeneous deformation of bulk metallic glass under elastostatic compression [J]. Scr. Mater., 2015, 102: 67
47 Priezjev N V. Aging and rejuvenation during elastostatic loading of amorphous alloys: A molecular dynamics simulation study [J]. Comput. Mater. Sci., 2019, 168: 125
48 Lou Y, Liu X, Yang X L, et al. Fast rejuvenation in bulk metallic glass induced by ultrasonic vibration precompression [J]. Intermetallics, 2020, 118: 106687
49 Sohrabi S, Li M X, Bai H Y, et al. Energy storage oscillation of metallic glass induced by high-intensity elastic stimulation [J]. Appl. Phys. Lett., 2020, 116: 081901
50 Wang D P, Yang Y, Niu X R, et al. Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses [J]. Phys. Rev., 2017, 95B: 235407
51 Meng F Q, Tsuchiya K, Ii S, et al. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass [J]. Appl. Phys. Lett., 2012, 101: 121914
52 Qiang J, Tsuchiya K. Composition dependence of mechanically-induced structural rejuvenation in Zr-Cu-Al-Ni metallic glasses [J]. J. Alloys Compd., 2017, 712: 250
53 Dmowski W, Yokoyama Y, Chuang A, et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation [J]. Acta Mater., 2010, 58: 429
54 González S, Fornell J, Pellicer E, et al. Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass [J]. Appl. Phys. Lett., 2013, 103: 211907
55 Concustell A, Méar F O, Suriñach S, et al. Structural relaxation and rejuvenation in a metallic glass induced by shot-peening [J]. Philos. Mag. Lett., 2009, 89: 831
56 Meylan C M, Orava J, Greer A L. Rejuvenation through plastic deformation of a La-based metallic glass measured by fast-scanning calorimetry [J]. J. Non-Cryst. Solids, 2020, 8X: 100051
57 Louzguine-Luzgin D V, Ketov S V, Wang Z, et al. Plastic deformation studies of Zr-based bulk metallic glassy samples with a low aspect ratio [J]. Mater. Sci. Eng., 2014, A616: 288
58 Haruyama O, Kisara K, Yamashita A, et al. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses [J]. Acta Mater., 2013, 61: 3224
59 Pan J, Chen Q, Liu L, et al. Softening and dilatation in a single shear band [J]. Acta Mater., 2011, 59: 5146
60 Bei H, Xie S, George E P. Softening caused by profuse shear banding in a bulk metallic glass [J]. Phys. Rev. Lett., 2006, 96: 105503
61 Liu J W, Cao Q P, Chen L Y, et al. Shear band evolution and hardness change in cold-rolled bulk metallic glasses [J]. Acta Mater., 2010, 58: 4827
62 Jiang W H, Pinkerton F E, Atzmon M. Deformation-induced nanocrystallization: A comparison of two amorphous Al-based alloys [J]. J. Mater. Res., 2005, 20: 696
63 Pan J, Wang Y X, Guo Q, et al. Extreme rejuvenation and softening in a bulk metallic glass [J]. Nat. Commun., 2018, 9: 560
64 Pan J, Wang Y X, Li Y. Ductile fracture in notched bulk metallic glasses [J]. Acta Mater., 2017, 136: 126
65 Pan J, Zhou H F, Wang Z T, et al. Origin of anomalous inverse notch effect in bulk metallic glasses [J]. J. Mech. Phys. Solids, 2015, 84: 85
66 Dong J, Feng Y H, Huan Y, et al. Rejuvenation in hot-drawn micrometer metallic glassy wires [J]. Chin. Phys. Lett., 2020, 37: 017103
67 Ma Y B, Wang B Z, Zhang Q D, et al. Change dynamic behaviors by heightening its stored energy of monolithic bulk metallic glass [J]. Mater. Des., 2019, 181: 107971
68 Tong Y, Dmowski W, Bei H, et al. Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep [J]. Acta Mater., 2018, 148: 384
69 Tong Y, Dmowski W, Yokoyama Y, et al. Recovering compressive plasticity of bulk metallic glasses by high-temperature creep [J]. Scr. Mater., 2013, 69: 570
70 Ding G, Li C, Zaccone A, et al. Ultrafast extreme rejuvenation of metallic glasses by shock compression [J]. Sci. Adv., 2019, 5: eaaw6249
71 Song K K, Pauly S, Zhang Y, et al. Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass [J]. Intermetallics, 2011, 19: 1394
72 Yavari A R, Le Moulec A, Inoue A, et al. Excess free volume in metallic glasses measured by X-ray diffraction [J]. Acta Mater., 2005, 53: 1611
73 Zhu F, Hirata A, Liu P, et al. Correlation between local structure order and spatial heterogeneity in a metallic glass [J]. Phys. Rev. Lett., 2017, 119: 215501
74 Zhu F, Song S X, Reddy K M, et al. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses [J]. Nat. Commun., 2018, 9: 3965
75 Pan J, Ivanov Y P, Zhou W H, et al. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass [J]. Nature, 2020, 578: 559
76 Sarac B, Gammer C, Deng L, et al. Elastostatic reversibility in thermally formed bulk metallic glasses: Nanobeam diffraction fluctuation electron microscopy [J]. Nanoscale, 2018, 10: 1081
77 Hilke S, Rösner H, Geissler D, et al. The influence of deformation on the medium-range order of a Zr-based bulk metallic glass characterized by variable resolution fluctuation electron microscopy [J]. Acta Mater., 2019, 171: 275
78 Jiang S Q, Huang Y, Li M Z. Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective [J]. Chin. Phys., 2019, 28B: 046103
79 Feng S D, Chan K C, Zhao L, et al. Rejuvenation by weakening the medium range order in Zr46Cu46Al8 metallic glass with pressure preloading: A molecular dynamics simulation study [J]. Mater. Des., 2018, 158: 248
80 Ge T P, Wang C, Tan J, et al. Unusual energy state evolution in Ce-based metallic glass under high pressure [J]. J. Appl. Phys., 2017, 121: 205109
81 Greer A L, Cheng Y Q, Ma E. Shear bands in metallic glasses [J]. Mater. Sci. Eng., 2013, R74: 71
82 Lewandowski J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses [J]. Philos. Mag. Lett., 2005, 85: 77
83 Chen L Y, Setyawan A D, Kato H, et al. Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature [J]. Scr. Mater., 2008, 59: 75
84 Di S Y, Wang Q Q, Zhou J, et al. Enhancement of plasticity for FeCoBSiNb bulk metallic glass with superhigh strength through cryogenic thermal cycling [J]. Scr. Mater., 2020, 187: 13
85 Song W L, Meng X H, Wu Y, et al. Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation [J]. Sci. Bull., 2018, 63: 840
86 Bian X L, Zhao D, Kim J T, et al. Controlling the distribution of structural heterogeneities in severely deformed metallic glass [J]. Mater. Sci. Eng., 2019, A752: 36
87 Ebner C, Pauly S, Eckert J, et al. Effect of mechanically induced structural rejuvenation on the deformation behaviour of CuZr based bulk metallic glass [J]. Mater. Sci. Eng., 2020, A773: 138848
88 Denis P, Meylan C M, Ebner C, et al. Rejuvenation decreases shear band sliding velocity in Pt-based metallic glasses [J]. Mater. Sci. Eng., 2017, A684: 517
89 Dieter G E. Mechanical Metallurgy [M]. New York: McGraw-Hill, 1961: 1
90 Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
91 Wu Y, Xiao Y H, Chen G L, et al. Bulk metallic glass composites with transformation-mediated work-hardening and ductility [J]. Adv. Mater., 2010, 22: 2770
92 Lee J C, Kim Y C, Ahn J P, et al. Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite [J]. Acta Mater., 2004, 52: 1525
93 Jang D C, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
94 Chen D Z, Gu X W, An Q, et al. Ductility and work hardening in nano-sized metallic glasses [J]. Appl. Phys. Lett., 2015, 106: 061903
95 Wang Z T, Pan J, Li Y, et al. Densification and strain hardening of a metallic glass under tension at room temperature [J]. Phys. Rev. Lett., 2013, 111: 135504
96 Taylor G I. The mechanism of plastic deformation of crystals. Part I. -Theoretical [J]. Proc. Roy. Soc., 1934, 145A: 362
97 Demetriou M D, Launey M E, Garrett G, et al. A damage-tolerant glass [J]. Nat. Mater., 2011, 10: 123
98 Grell D, Dabrock F, Kerscher E. Cyclic cryogenic pretreatments influencing the mechanical properties of a bulk glassy Zr-based alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 1330
99 Ketkaew J, Yamada R, Wang H, et al. The effect of thermal cycling on the fracture toughness of metallic glasses [J]. Acta Mater., 2020, 184: 100
100 Zhang L C, Jia Z, Lyu F, et al. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects [J]. Prog. Mater. Sci., 2019, 105: 100576
101 Wang Z J, Li M X, Yu J H, et al. Low-iridium-content IrNiTa metallic glass films as intrinsically active catalysts for hydrogen evolution reaction [J]. Adv. Mater., 2020, 32: 1906384
102 Wang J Q, Liu Y H, Chen M W, et al. Rapid degradation of azo dye by Fe-based metallic glass powder [J]. Adv. Funct. Mater., 2012, 22: 2567
103 Wang J Q, Liu Y H, Chen M W, et al. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders [J]. Sci. Rep., 2012, 2: 418
104 Lv Z W, Yan Y Q, Yuan C C, et al. Making Fe-Si-B amorphous powders as an effective catalyst for dye degradation by high-energy ultrasonic vibration [J]. Mater. Des., 2020, 194: 108876
105 Miao F, Wang Q Q, Di S Y, et al. Enhanced dye degradation capability and reusability of Fe-based amorphous ribbons by surface activation [J]. J. Mater. Sci. Technol., 2020, 53: 163
106 Zhang C Q, Sun Q L. Annealing-induced different decolorization performances of Fe-Mo-Si-B amorphous alloys [J]. J. Non-Cryst. Solids, 2017, 470: 93
107 Zheng H, Zhu L, Jiang S S, et al. Recovering the bending ductility of the stress-relieved Fe-based amorphous alloy ribbons by cryogenic thermal cycling [J]. J. Alloys Compd., 2019, 790: 529
108 Ri M C, Sohrabi S, Ding D W, et al. Serrated magnetic properties in metallic glass by thermal cycle [J]. Chin. Phys., 2017, 26B: 066101
109 Gu J, Shao Y, Shi L, et al. Novel corrosion behaviours of the annealing and cryogenic thermal cycling treated Ti-based metallic glasses [J]. Intermetallics, 2019, 110: 106467
110 Li S B, Lan F J, Chen S Y, et al. Bulk intrinsic heterogeneity of metallic glasses probed by Meissner effect [J]. Intermetallics, 2020, 119: 106721
111 Zhong L, Wang J W, Sheng H W, et al. Formation of monatomic metallic glasses through ultrafast liquid quenching [J]. Nature, 2014, 512: 177
112 Yu H B, Luo Y S, Samwer K. Ultrastable metallic glass [J]. Adv. Mater., 2013, 25: 5904
113 Lüttich M, Giordano V M, Le Floch S, et al. Anti-aging in ultrastable metallic glasses [J]. Phys. Rev. Lett., 2018, 120: 135504
114 Yamada R, Tanaka N, Guo W, et al. Crystallization behavior of thermally rejuvenated Zr50Cu40Al10 metallic glass [J]. Mater. Trans., 2017, 58: 1463
115 Zhou H B, Hilke S, Pineda E, et al. X-ray photon correlation spectroscopy revealing the change of relaxation dynamics of a severely deformed Pd-based bulk metallic glass [J]. Acta Mater., 2020, 195: 446
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[5] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[6] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[7] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[8] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[9] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[10] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[11] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[12] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[13] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[14] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[15] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.