|
|
聚变堆用W在等离子体作用下的辐照损伤行为研究进展 |
刘伟1( ), 陈婉琦2, 马梦晗1, 李恺伦3 |
1清华大学 材料学院 北京 100084 2中国核电工程有限公司 北京 100840 3中国科学院工程热物理研究所 北京 100190 |
|
Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion |
LIU Wei1( ), CHEN Wanqi2, MA Menghan1, LI Kailun3 |
1School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2CNNC China Nuclear Power Engineering Co., Ltd., Beijing 100840, China 3Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
Wei LIU,
Wanqi CHEN,
Menghan MA,
Kailun LI.
Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. Acta Metall Sin, 2023, 59(8): 986-1000.
1 |
Knaster J, Moeslang A, Muroga T. Materials research for fusion [J]. Nat. Phys., 2016, 12: 424
|
2 |
Barbarino M. A brief history of nuclear fusion [J]. Nat. Phys., 2020, 16: 890
doi: 10.1038/s41567-020-0940-7
|
3 |
Institute of Plasma Physics, Chinese Academy of Sciences, Bureau of Basic Science, Chinese Academy of Sciences. Experimental and advanced superconducting Tokamak [J]. Bull. Chin. Acad. Sci., 2008, 23: 474
|
3 |
中国科学院等离子体物理研究所, 中国科学院基础科学局. 全超导托卡马克核聚变实验装置 [J]. 中国科学院院刊, 2008, 23: 474
|
4 |
ITER Organiazation. ITER, the way to new energy [DB/OL]. [2014-05-20].
|
5 |
Xu Z Y. International thermonuclear experimental reactor building and fusion materials study [J]. Atomic Energy Sci. Technol., 2005, 39: 46
|
5 |
许增裕. 国际热核实验堆的建造与聚变堆材料研究 [J]. 原子能科学技术, 2005, 39: 46
|
6 |
Ongena J, Koch R, Wolf R, et al. Magnetic-confinement fusion [J]. Nat. Phys., 2016, 12: 398
doi: 10.1038/nphys3745
|
7 |
Dolan T J. Plasma physics and fusion energy [J]. Fusion Sci. Technol., 2017, 54: 1010
doi: 10.13182/FST08-A7361
|
8 |
Pitts R A, Bonnin X, Escourbiac F, et al. Physics basis for the first ITER tungsten divertor [J]. Nucl. Mater. Energy, 2019, 20: 100696
|
9 |
Barabash V, Federici G, Matera R, et al. Armour materials for the ITER plasma facing components [J]. Phys. Scr., 1999, 1999: 74
|
10 |
Linke J, Lorenzetto P, Majerus P, et al. EU development of high heat flux components [J]. Fusion Sci. Technol., 2005, 47: 678
doi: 10.13182/FST05-A764
|
11 |
Šmid I, Pacher H D, Vieider G, et al. Lifetime of Be-, CFC- and W-armoured ITER divertor plates [J]. J. Nucl. Mater., 1996, 233-237: 701
doi: 10.1016/S0022-3115(96)00309-1
|
12 |
Tokunaga K, Baldwin M J, Doerner R P, et al. Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma [J]. J. Nucl. Mater., 2005, 337-339: 887
doi: 10.1016/j.jnucmat.2004.10.137
|
13 |
Shu W M, Luo G N, Yamanishi T. Mechanisms of retention and blistering in near-surface region of tungsten exposed to high flux deuterium plasmas of tens of eV [J]. J. Nucl. Mater., 2007, 367-370: 1463
doi: 10.1016/j.jnucmat.2007.04.005
|
14 |
Shu W M. High-dome blisters formed by deuterium-induced local superplasticity [J]. Appl. Phys. Lett., 2008, 92: 211904
doi: 10.1063/1.2937139
|
15 |
Fukumoto M, Ohtsuka Y, Ueda Y, et al. Blister formation on tungsten damaged by high energy particle irradiation [J]. J. Nucl. Mater., 2008, 375: 224
doi: 10.1016/j.jnucmat.2007.11.005
|
16 |
Jia Y Z, Liu W, Xu B, et al. Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature [J]. J. Nucl. Mater., 2016, 477: 165
doi: 10.1016/j.jnucmat.2016.05.011
|
17 |
Lindig S, Balden M, Alimov V K, et al. Subsurface morphology changes due to deuterium bombardment of tungsten [J]. Phys. Scr., 2009, 2009: 014040
|
18 |
Roth J, Schmid K. Hydrogen in tungsten as plasma-facing material [J]. Phys. Scr., 2011, 2011: 014031
|
19 |
Roth J. Blistering and bubble formation [A]. Applications of Ion Beams to Materials [C]. Warwick: University of Warwick, 1975: 280
|
20 |
Ye M Y, Kanehara H, Fukuta S, et al. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I [J]. J. Nucl. Mater., 2003, 313-316: 72
doi: 10.1016/S0022-3115(02)01349-1
|
21 |
Jia Y Z, De Temmerman G, Luo G N, et al. Surface morphology and deuterium retention in tungsten exposed to high flux D plasma at high temperatures [J]. J. Nucl. Mater., 2015, 457: 213
doi: 10.1016/j.jnucmat.2014.11.079
|
22 |
Luo G N, Shu W M, Nishi M. Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10-100 eV plasmas [J]. Fusion Eng. Des., 2006, 81: 957
doi: 10.1016/j.fusengdes.2005.09.023
|
23 |
Shimada T, Kikuchi H, Ueda Y, et al. Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation [J]. J. Nucl. Mater., 2003, 313-316: 204
doi: 10.1016/S0022-3115(02)01447-2
|
24 |
Shu W M, Kawasuso A, Miwa Y, et al. Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315 K [J]. Phys. Scr., 2007, 2007: 96
|
25 |
Miyamoto M, Nishijima D, Ueda Y, et al. Observations of suppressed retention and blistering for tungsten exposed to deuterium-helium mixture plasmas [J]. Nucl. Fusion, 2009, 49: 065035
|
26 |
Jia Y Z. Research on damage behavior of tungsten materials under deuterium plasma/transient high heat fluxes [D]. Beijing: Tsinghua University, 2016
|
26 |
贾玉振. 氘等离子体/瞬态高热流作用下W材料的损伤研究 [D]. 北京: 清华大学, 2016
|
27 |
Xu H Y. Surface modification on tungsten exposed to low energy high flux deuterium plasmas [D]. Beijing: Tsinghua University, 2013
|
27 |
徐海燕. 低能高束流氘等离子体作用下钨的起泡行为研究 [D]. 北京: 清华大学, 2013
|
28 |
Condon J B, Schober T. Hydrogen bubbles in metals [J]. J. Nucl. Mater., 1993, 207: 1
doi: 10.1016/0022-3115(93)90244-S
|
29 |
Alimov V K, Roth J, Mayer M. Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers [J]. J. Nucl. Mater., 2005, 337-339: 619
doi: 10.1016/j.jnucmat.2004.10.082
|
30 |
Hu W H, Luo F F, Shen Z Y, et al. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions [J]. Fusion Eng. Des., 2015, 90: 23
doi: 10.1016/j.fusengdes.2014.10.007
|
31 |
Liu Y N, Ahlgren T, Bukonte L, et al. Mechanism of vacancy formation induced by hydrogen in tungsten [J]. AIP Adv., 2013, 3: 122111
doi: 10.1063/1.4849775
|
32 |
Dubinko A V, Terentyev D A, Zhurkin E E. Study of the microstructure induced by high-flux plasma via transmission electron microscopy [J]. J.Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2018, 12: 792
|
33 |
Dubinko A, Terentyev D, Bakaeva A, et al. Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM [J]. Appl. Surf. Sci., 2017, 393: 330
doi: 10.1016/j.apsusc.2016.09.071
|
34 |
Guo W G, Ge L, Yuan Y, et al. (001) edge dislocation nucleation mechanism of surface blistering in tungsten exposed to deuterium plasma [J]. Nucl. Fusion, 2019, 59: 026005
|
35 |
Xie H X, Gao N, Xu K, et al. A new loop-punching mechanism for helium bubble growth in tungsten [J]. Acta Mater., 2017, 141: 10
doi: 10.1016/j.actamat.2017.09.005
|
36 |
Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: A molecular dynamics simulation [J]. J. Nucl. Mater., 2014, 451: 356
doi: 10.1016/j.jnucmat.2014.04.022
|
37 |
Hou J, Kong X S, Wu X B, et al. Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals [J]. Nat. Mater., 2019, 18: 833
doi: 10.1038/s41563-019-0422-4
pmid: 31308516
|
38 |
Kolasinski R D, Shimada M, Oya Y, et al. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten [J]. J. Appl. Phys., 2015, 118: 073301
|
39 |
Kolasinski R D, Cowgill D F, Donovan D C, et al. Mechanisms of gas precipitation in plasma-exposed tungsten [J]. J. Nucl. Mater., 2013, 438: S1019
doi: 10.1016/j.jnucmat.2013.01.222
|
40 |
Kolasinski R D, Cowgill D F, Causey R A. A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials [J]. J. Nucl. Mater., 2011, 415: S676
doi: 10.1016/j.jnucmat.2010.10.077
|
41 |
Chen W Q, Wang X Y, Chiu Y L, et al. Growth mechanism of subsurface hydrogen cavities in tungsten exposed to low-energy high-flux hydrogen plasma [J]. Acta Mater., 2020, 193: 19
doi: 10.1016/j.actamat.2020.04.012
|
42 |
Manhard A, Von Toussaint U, Balden M, et al. Microstructure and defect analysis in the vicinity of blisters in polycrystalline tungsten [J]. Nucl. Mater. Energy, 2017, 12: 714
|
43 |
Valles G, Panizo-Laiz M, González C, et al. Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten [J]. Acta Mater., 2017, 122: 277
doi: 10.1016/j.actamat.2016.10.007
|
44 |
Chen W Q, Xiao X Z, Pang B, et al. Irradiation hardening induced by blistering in tungsten due to low-energy high flux hydrogen plasma exposure [J]. J. Nucl. Mater., 2019, 522: 11
doi: 10.1016/j.jnucmat.2019.05.004
|
45 |
Liu Y L, Zhang Y, Zhou H B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal [J]. Phys. Rev., 2009, 79B: 172103
|
46 |
Geng W T, Wan L, Du J P, et al. Hydrogen bubble nucleation in α-iron [J]. Scr. Mater., 2017, 134: 105
doi: 10.1016/j.scriptamat.2017.03.006
|
47 |
Terentyev D, De Temmerman G, Morgan T W, et al. Effect of plastic deformation on deuterium retention and release in tungsten [J]. J. Appl. Phys., 2015, 117: 083302
|
48 |
Shu W M, Wakai E, Yamanishi T. Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma [J]. Nucl. Fusion, 2007, 47: 201
doi: 10.1088/0029-5515/47/3/006
|
49 |
Fukai Y, Ōkuma N. Formation of superabundant vacancies in Pd hydride under high hydrogen pressures [J]. Phys. Rev. Lett., 1994, 73: 1640
pmid: 10056846
|
50 |
Fukai Y, Ishii Y, Goto Y, et al. Formation of superabundant vacancies in Pd-H alloys [J]. J. Alloys Compd., 2000, 313: 121
doi: 10.1016/S0925-8388(00)01195-6
|
51 |
Fukai Y. Formation of superabundant vacancies in M-H alloys and some of its consequences: A review [J]. J. Alloys Compd., 2003, 356-357: 263
doi: 10.1016/S0925-8388(02)01269-0
|
52 |
Sugimoto H, Fukai Y. Hydrogen-induced superabundant vacancy formation by electrochemical methods in bcc Fe: Monte Carlo simulation [J]. Scr. Mater., 2017, 134: 20
doi: 10.1016/j.scriptamat.2017.02.033
|
53 |
Kong X S, You Y W, Fang Q F, et al. The role of impurity oxygen in hydrogen bubble nucleation in tungsten [J]. J. Nucl. Mater., 2013, 433: 357
doi: 10.1016/j.jnucmat.2012.10.024
|
54 |
Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
doi: 10.1126/science.aaz0122
|
55 |
Terentyev D, Dubinko V, Bakaev A, et al. Dislocations mediate hydrogen retention in tungsten [J]. Nucl. Fusion, 2014, 54: 042004
|
56 |
Bakaeva A, Terentyev D, De Temmerman G, et al. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures [J]. J. Nucl. Mater., 2016, 479: 307
doi: 10.1016/j.jnucmat.2016.07.018
|
57 |
Smirnov R D, Krasheninnikov S I. Stress-induced hydrogen self-trapping in tungsten [J]. Nucl. Fusion, 2018, 58: 126016
doi: 10.1088/1741-4326/aae2c7
|
58 |
Cottrell A H. The 1958 institute of metals division lecture—Theory of brittle fracture in steel and similar metals [J]. Trans. Am. Inst. Min. Metall. Eng., 1958, 212: 192
|
59 |
Chen W Q, Wang X Y, Li K L, et al. Nucleation mechanism of intra-granular blisters in tungsten exposed to hydrogen plasma [J]. Scr. Mater., 2020, 187: 243
doi: 10.1016/j.scriptamat.2020.06.024
|
60 |
Ueda Y, Schmid K, Balden M, et al. Baseline high heat flux and plasma facing materials for fusion [J]. Nucl. Fusion, 2017, 57: 092006
|
61 |
Kajita S, De Temmerman G, Morgan T, et al. Thermal response of nanostructured tungsten [J]. Nucl. Fusion, 2014, 54: 033005
|
62 |
Nishijima D, Doerner R P, Iwamoto D, et al. Response of fuzzy tungsten surfaces to pulsed plasma bombardment [J]. J. Nucl. Mater., 2013, 434: 230
doi: 10.1016/j.jnucmat.2012.10.042
|
63 |
Qu S L. Research on micro-nano scale damage on tungsten surface under helium irradiation [D]. Beijing: Tsinghua University, 2018
|
63 |
曲世联. 氦辐照条件下钨材料表面微纳尺度的损伤研究 [D]. 北京: 清华大学, 2018
|
64 |
Miyamoto M, Mikami S, Nagashima H, et al. Systematic investigation of the formation behavior of helium bubbles in tungsten [J]. J. Nucl. Mater., 2015, 463: 333
doi: 10.1016/j.jnucmat.2014.10.098
|
65 |
Qu S L, Sun H, Kreter A, et al. Degradation of thermal conductivity of the damaged layer of tungsten irradiated by helium-plasma [J]. Fusion Eng. Des., 2018, 137: 97
doi: 10.1016/j.fusengdes.2018.08.014
|
66 |
Cahill D G. Thermal conductivity measurement from 30 to 750 K: The 3ω method [J]. Rev. Sci. Instrum., 1990, 61: 802
doi: 10.1063/1.1141498
|
67 |
Cui S, Simmonds M, Qin W J, et al. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method [J]. J. Nucl. Mater., 2017, 486: 267
doi: 10.1016/j.jnucmat.2017.01.023
|
68 |
Tynan G R, Doerner R P, Barton J, et al. Deuterium retention and thermal conductivity in ion-beam displacement-damaged tungsten [J]. Nucl. Mater. Energy, 2017, 12: 164
|
69 |
Marinelli G, Martina F, Lewtas H, et al. Microstructure and thermal properties of unalloyed tungsten deposited by wire + arc additive manufacture [J]. J. Nucl. Mater., 2019, 522: 45
doi: 10.1016/j.jnucmat.2019.04.049
|
70 |
Reza A, Zayachuk Y, Yu H B, et al. Transient grating spectroscopy of thermal diffusivity degradation in deuterium implanted tungsten [J]. Scr. Mater., 2020, 174: 6
doi: 10.1016/j.scriptamat.2019.08.014
|
71 |
Shi J Q, Wu K T, Shen Y. Radiation hardening effect of tungsten [J]. Trans. Mater. Heat Treat., 2019, 40(11): 1
|
71 |
史佳庆, 吴恺慆, 沈 耀. 钨的辐照硬化效应 [J]. 材料热处理学报, 2019, 40(11): 1
|
72 |
Terentyev D, Bakaeva A, Pardoen T, et al. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation [J]. J. Nucl. Mater. 2016, 476: 1
doi: 10.1016/j.jnucmat.2016.04.007
|
73 |
Zayachuk Y, Armstrong D E J, Bystrov K, et al. Nanoindentation study of the combined effects of crystallography, heat treatment and exposure to high-flux deuterium plasma in tungsten [J]. J. Nucl. Mater., 2017, 486: 183
doi: 10.1016/j.jnucmat.2017.01.026
|
74 |
Fang X F, Kreter A, Rasinski M, et al. Hydrogen embrittlement of tungsten induced by deuterium plasma: Insights from nanoindentation tests [J]. J. Mater. Res., 2018, 33: 3530
doi: 10.1557/jmr.2018.305
|
75 |
Gerberich W W, Tymiak N I, Grunlan J C, et al. Interpretations of indentation size effects [J]. J. Appl. Mech., 2002, 69: 433
doi: 10.1115/1.1469004
|
76 |
Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
doi: 10.1016/S0022-5096(97)00086-0
|
77 |
Durst K, Backes B, Göken M. Indentation size effect in metallic materials: Correcting for the size of the plastic zone [J]. Scr. Mater., 2005, 52: 1093
doi: 10.1016/j.scriptamat.2005.02.009
|
78 |
Van Eden G G, Morgan T W, Van Der Meiden H J, et al. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling [J]. Nucl. Fusion, 2014, 54: 123010
doi: 10.1088/0029-5515/54/12/123010
|
79 |
Wirtz M, Bardin S, Huber A, et al. Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material [J]. Nucl. Fusion, 2015, 55: 123017
doi: 10.1088/0029-5515/55/12/123017
|
80 |
Wirtz M, Linke J, Pintsuk G, et al. Thermal shock behaviour of tungsten after high flux H-plasma loading [J]. J. Nucl. Mater., 2013, 443: 497
doi: 10.1016/j.jnucmat.2013.08.002
|
81 |
Wirtz M, Linke J, Pintsuk G, et al. Influence of high flux hydrogen-plasma exposure on the thermal shock induced crack formation in tungsten [J]. J. Nucl. Mater., 2012, 420: 218
doi: 10.1016/j.jnucmat.2011.09.035
|
82 |
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 317
|
82 |
褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 317
|
83 |
Jia Y Z, Liu W, Xu B, et al. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading [J]. Nucl. Fusion, 2015, 55: 113015
doi: 10.1088/0029-5515/55/11/113015
|
84 |
Morgan T W, Zielinski J J, Hensen B J, et al. Reduced damage threshold for tungsten using combined steady state and transient sources [J]. J. Nucl. Mater., 2013, 438: S784
doi: 10.1016/j.jnucmat.2013.01.168
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|