Please wait a minute...
金属学报  2023, Vol. 59 Issue (8): 986-1000    DOI: 10.11900/0412.1961.2023.00078
  综述 本期目录 | 过刊浏览 |
聚变堆用W在等离子体作用下的辐照损伤行为研究进展
刘伟1(), 陈婉琦2, 马梦晗1, 李恺伦3
1清华大学 材料学院 北京 100084
2中国核电工程有限公司 北京 100840
3中国科学院工程热物理研究所 北京 100190
Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion
LIU Wei1(), CHEN Wanqi2, MA Menghan1, LI Kailun3
1School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2CNNC China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
3Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
Wei LIU, Wanqi CHEN, Menghan MA, Kailun LI. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. Acta Metall Sin, 2023, 59(8): 986-1000.

全文: PDF(5279 KB)   HTML
摘要: 

核聚变反应堆中,W因为其高熔点、高导热性、低溅射率和低氚(T)滞留等优势,成为面向等离子体材料中最有应用前景的候选材料。在服役过程中,W会受到低能高束流等离子体的辐照作用,导致材料表面产生微纳尺度的损伤结构,如表面起泡和表面纳米组织等,引起导热性能和力学性能下降,从而严重影响其再服役性能。本文聚焦于国内外关于氢/氘(H/D)等离子体作用下W的辐照损伤行为的研究现状,总结了气泡的形核和长大机制,以及辐照缺陷对导热、力学和再服役性能的影响机制,为W组织结构优化、性能预测和服役寿命评价提供理论基础。

关键词 核聚变W等离子体辐照损伤服役性能    
Abstract

Tungsten is the most promising candidate as plasma facing material in nuclear fusion reactors because of its high melting point, high thermal conductivity, low sputtering rate, and low tritium retention. However, when exposed to low-energy high flux plasma, tungsten undergoes micro/nanoscale damage, such as surface blistering and surface nanostructure, on its surface. These damage structures can degrade thermal and mechanical properties, thereby adversely affecting the reservice performance of tungsten. In this paper, the current research status of the damage behavior of tungsten when exposed to H/D plasma was focused. The research progress of the mechanisms of surface blistering nucleation and growth, as well as the effects of irradiation defects on thermal conductivity, mechanics, and service performance was summarized. These data can provide a theoretical basis for optimizing the microstructure of tungsten materials, thus improving its service performance and extending its service life.

Key wordsnuclear fusion    tungsten    plasma    irradiation damage    service performance
收稿日期: 2023-02-27     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(12105314)
通讯作者: 刘 伟,liuw@mail.tsinghua.edu.cn,主要从事核材料和增材制造的研究
Corresponding author: LIU Wei, professor, Tel:13910677301, E-mail: liuw@mail.tsinghua.edu.cn
作者简介: 刘 伟,男,1965年生,教授,博士
图1  D等离子体辐照在表面取向为[111]、[110]和[001]的W晶粒上引起的表面起泡现象[16]
图2  D等离子体(943 K)分别在1.55 × 1026、4.21 × 1026和7.05 × 1026 m-2辐照条件下W样品表面形貌及表面气泡尺寸和密度分布统计[21]
图3  不同晶粒取向[111]表面上的表面气泡形貌(具体晶粒取向已用[110]方向标出)[16]
图4  基于塑性变形机制的表面起泡模型[16]
图5  D等离子体辐照后W的表面气泡和纳米泡(38 eV、1024 m-2·s-1、423 K、7 × 1026 m-2)[27]
图6  D等离子体辐照再结晶W的气泡和位错TEM像[34]
图7  位错环挤出机制示意图[28]
图8  H等离子体辐照再结晶W中晶内气泡及附近位错环形貌[41]
图9  H等离子体辐照再结晶W中晶内气泡尖端的剪切位错环形貌[41]
图10  再结晶W表面晶内气泡的截面形貌[59]
图11  氢泡在<100>刃型位错处的形核过程[59]
图12  4种样品的热扩散率与辐照剂量和温度的关系[70]
图13  不同辐照温度下W的压痕硬度变化[44]
图14  W受到仅稳态等离子体辐照、仅瞬态高热流脉冲、顺序辐照、同时辐照后的表面形貌[84]
1 Knaster J, Moeslang A, Muroga T. Materials research for fusion [J]. Nat. Phys., 2016, 12: 424
2 Barbarino M. A brief history of nuclear fusion [J]. Nat. Phys., 2020, 16: 890
doi: 10.1038/s41567-020-0940-7
3 Institute of Plasma Physics, Chinese Academy of Sciences, Bureau of Basic Science, Chinese Academy of Sciences. Experimental and advanced superconducting Tokamak [J]. Bull. Chin. Acad. Sci., 2008, 23: 474
3 中国科学院等离子体物理研究所, 中国科学院基础科学局. 全超导托卡马克核聚变实验装置 [J]. 中国科学院院刊, 2008, 23: 474
4 ITER Organiazation. ITER, the way to new energy [DB/OL]. [2014-05-20].
5 Xu Z Y. International thermonuclear experimental reactor building and fusion materials study [J]. Atomic Energy Sci. Technol., 2005, 39: 46
5 许增裕. 国际热核实验堆的建造与聚变堆材料研究 [J]. 原子能科学技术, 2005, 39: 46
6 Ongena J, Koch R, Wolf R, et al. Magnetic-confinement fusion [J]. Nat. Phys., 2016, 12: 398
doi: 10.1038/nphys3745
7 Dolan T J. Plasma physics and fusion energy [J]. Fusion Sci. Technol., 2017, 54: 1010
doi: 10.13182/FST08-A7361
8 Pitts R A, Bonnin X, Escourbiac F, et al. Physics basis for the first ITER tungsten divertor [J]. Nucl. Mater. Energy, 2019, 20: 100696
9 Barabash V, Federici G, Matera R, et al. Armour materials for the ITER plasma facing components [J]. Phys. Scr., 1999, 1999: 74
10 Linke J, Lorenzetto P, Majerus P, et al. EU development of high heat flux components [J]. Fusion Sci. Technol., 2005, 47: 678
doi: 10.13182/FST05-A764
11 Šmid I, Pacher H D, Vieider G, et al. Lifetime of Be-, CFC- and W-armoured ITER divertor plates [J]. J. Nucl. Mater., 1996, 233-237: 701
doi: 10.1016/S0022-3115(96)00309-1
12 Tokunaga K, Baldwin M J, Doerner R P, et al. Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma [J]. J. Nucl. Mater., 2005, 337-339: 887
doi: 10.1016/j.jnucmat.2004.10.137
13 Shu W M, Luo G N, Yamanishi T. Mechanisms of retention and blistering in near-surface region of tungsten exposed to high flux deuterium plasmas of tens of eV [J]. J. Nucl. Mater., 2007, 367-370: 1463
doi: 10.1016/j.jnucmat.2007.04.005
14 Shu W M. High-dome blisters formed by deuterium-induced local superplasticity [J]. Appl. Phys. Lett., 2008, 92: 211904
doi: 10.1063/1.2937139
15 Fukumoto M, Ohtsuka Y, Ueda Y, et al. Blister formation on tungsten damaged by high energy particle irradiation [J]. J. Nucl. Mater., 2008, 375: 224
doi: 10.1016/j.jnucmat.2007.11.005
16 Jia Y Z, Liu W, Xu B, et al. Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature [J]. J. Nucl. Mater., 2016, 477: 165
doi: 10.1016/j.jnucmat.2016.05.011
17 Lindig S, Balden M, Alimov V K, et al. Subsurface morphology changes due to deuterium bombardment of tungsten [J]. Phys. Scr., 2009, 2009: 014040
18 Roth J, Schmid K. Hydrogen in tungsten as plasma-facing material [J]. Phys. Scr., 2011, 2011: 014031
19 Roth J. Blistering and bubble formation [A]. Applications of Ion Beams to Materials [C]. Warwick: University of Warwick, 1975: 280
20 Ye M Y, Kanehara H, Fukuta S, et al. Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I [J]. J. Nucl. Mater., 2003, 313-316: 72
doi: 10.1016/S0022-3115(02)01349-1
21 Jia Y Z, De Temmerman G, Luo G N, et al. Surface morphology and deuterium retention in tungsten exposed to high flux D plasma at high temperatures [J]. J. Nucl. Mater., 2015, 457: 213
doi: 10.1016/j.jnucmat.2014.11.079
22 Luo G N, Shu W M, Nishi M. Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10-100 eV plasmas [J]. Fusion Eng. Des., 2006, 81: 957
doi: 10.1016/j.fusengdes.2005.09.023
23 Shimada T, Kikuchi H, Ueda Y, et al. Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation [J]. J. Nucl. Mater., 2003, 313-316: 204
doi: 10.1016/S0022-3115(02)01447-2
24 Shu W M, Kawasuso A, Miwa Y, et al. Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315 K [J]. Phys. Scr., 2007, 2007: 96
25 Miyamoto M, Nishijima D, Ueda Y, et al. Observations of suppressed retention and blistering for tungsten exposed to deuterium-helium mixture plasmas [J]. Nucl. Fusion, 2009, 49: 065035
26 Jia Y Z. Research on damage behavior of tungsten materials under deuterium plasma/transient high heat fluxes [D]. Beijing: Tsinghua University, 2016
26 贾玉振. 氘等离子体/瞬态高热流作用下W材料的损伤研究 [D]. 北京: 清华大学, 2016
27 Xu H Y. Surface modification on tungsten exposed to low energy high flux deuterium plasmas [D]. Beijing: Tsinghua University, 2013
27 徐海燕. 低能高束流氘等离子体作用下钨的起泡行为研究 [D]. 北京: 清华大学, 2013
28 Condon J B, Schober T. Hydrogen bubbles in metals [J]. J. Nucl. Mater., 1993, 207: 1
doi: 10.1016/0022-3115(93)90244-S
29 Alimov V K, Roth J, Mayer M. Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers [J]. J. Nucl. Mater., 2005, 337-339: 619
doi: 10.1016/j.jnucmat.2004.10.082
30 Hu W H, Luo F F, Shen Z Y, et al. Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions [J]. Fusion Eng. Des., 2015, 90: 23
doi: 10.1016/j.fusengdes.2014.10.007
31 Liu Y N, Ahlgren T, Bukonte L, et al. Mechanism of vacancy formation induced by hydrogen in tungsten [J]. AIP Adv., 2013, 3: 122111
doi: 10.1063/1.4849775
32 Dubinko A V, Terentyev D A, Zhurkin E E. Study of the microstructure induced by high-flux plasma via transmission electron microscopy [J]. J.Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2018, 12: 792
33 Dubinko A, Terentyev D, Bakaeva A, et al. Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM [J]. Appl. Surf. Sci., 2017, 393: 330
doi: 10.1016/j.apsusc.2016.09.071
34 Guo W G, Ge L, Yuan Y, et al. (001) edge dislocation nucleation mechanism of surface blistering in tungsten exposed to deuterium plasma [J]. Nucl. Fusion, 2019, 59: 026005
35 Xie H X, Gao N, Xu K, et al. A new loop-punching mechanism for helium bubble growth in tungsten [J]. Acta Mater., 2017, 141: 10
doi: 10.1016/j.actamat.2017.09.005
36 Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: A molecular dynamics simulation [J]. J. Nucl. Mater., 2014, 451: 356
doi: 10.1016/j.jnucmat.2014.04.022
37 Hou J, Kong X S, Wu X B, et al. Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals [J]. Nat. Mater., 2019, 18: 833
doi: 10.1038/s41563-019-0422-4 pmid: 31308516
38 Kolasinski R D, Shimada M, Oya Y, et al. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten [J]. J. Appl. Phys., 2015, 118: 073301
39 Kolasinski R D, Cowgill D F, Donovan D C, et al. Mechanisms of gas precipitation in plasma-exposed tungsten [J]. J. Nucl. Mater., 2013, 438: S1019
doi: 10.1016/j.jnucmat.2013.01.222
40 Kolasinski R D, Cowgill D F, Causey R A. A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials [J]. J. Nucl. Mater., 2011, 415: S676
doi: 10.1016/j.jnucmat.2010.10.077
41 Chen W Q, Wang X Y, Chiu Y L, et al. Growth mechanism of subsurface hydrogen cavities in tungsten exposed to low-energy high-flux hydrogen plasma [J]. Acta Mater., 2020, 193: 19
doi: 10.1016/j.actamat.2020.04.012
42 Manhard A, Von Toussaint U, Balden M, et al. Microstructure and defect analysis in the vicinity of blisters in polycrystalline tungsten [J]. Nucl. Mater. Energy, 2017, 12: 714
43 Valles G, Panizo-Laiz M, González C, et al. Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten [J]. Acta Mater., 2017, 122: 277
doi: 10.1016/j.actamat.2016.10.007
44 Chen W Q, Xiao X Z, Pang B, et al. Irradiation hardening induced by blistering in tungsten due to low-energy high flux hydrogen plasma exposure [J]. J. Nucl. Mater., 2019, 522: 11
doi: 10.1016/j.jnucmat.2019.05.004
45 Liu Y L, Zhang Y, Zhou H B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal [J]. Phys. Rev., 2009, 79B: 172103
46 Geng W T, Wan L, Du J P, et al. Hydrogen bubble nucleation in α-iron [J]. Scr. Mater., 2017, 134: 105
doi: 10.1016/j.scriptamat.2017.03.006
47 Terentyev D, De Temmerman G, Morgan T W, et al. Effect of plastic deformation on deuterium retention and release in tungsten [J]. J. Appl. Phys., 2015, 117: 083302
48 Shu W M, Wakai E, Yamanishi T. Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma [J]. Nucl. Fusion, 2007, 47: 201
doi: 10.1088/0029-5515/47/3/006
49 Fukai Y, Ōkuma N. Formation of superabundant vacancies in Pd hydride under high hydrogen pressures [J]. Phys. Rev. Lett., 1994, 73: 1640
pmid: 10056846
50 Fukai Y, Ishii Y, Goto Y, et al. Formation of superabundant vacancies in Pd-H alloys [J]. J. Alloys Compd., 2000, 313: 121
doi: 10.1016/S0925-8388(00)01195-6
51 Fukai Y. Formation of superabundant vacancies in M-H alloys and some of its consequences: A review [J]. J. Alloys Compd., 2003, 356-357: 263
doi: 10.1016/S0925-8388(02)01269-0
52 Sugimoto H, Fukai Y. Hydrogen-induced superabundant vacancy formation by electrochemical methods in bcc Fe: Monte Carlo simulation [J]. Scr. Mater., 2017, 134: 20
doi: 10.1016/j.scriptamat.2017.02.033
53 Kong X S, You Y W, Fang Q F, et al. The role of impurity oxygen in hydrogen bubble nucleation in tungsten [J]. J. Nucl. Mater., 2013, 433: 357
doi: 10.1016/j.jnucmat.2012.10.024
54 Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
doi: 10.1126/science.aaz0122
55 Terentyev D, Dubinko V, Bakaev A, et al. Dislocations mediate hydrogen retention in tungsten [J]. Nucl. Fusion, 2014, 54: 042004
56 Bakaeva A, Terentyev D, De Temmerman G, et al. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures [J]. J. Nucl. Mater., 2016, 479: 307
doi: 10.1016/j.jnucmat.2016.07.018
57 Smirnov R D, Krasheninnikov S I. Stress-induced hydrogen self-trapping in tungsten [J]. Nucl. Fusion, 2018, 58: 126016
doi: 10.1088/1741-4326/aae2c7
58 Cottrell A H. The 1958 institute of metals division lecture—Theory of brittle fracture in steel and similar metals [J]. Trans. Am. Inst. Min. Metall. Eng., 1958, 212: 192
59 Chen W Q, Wang X Y, Li K L, et al. Nucleation mechanism of intra-granular blisters in tungsten exposed to hydrogen plasma [J]. Scr. Mater., 2020, 187: 243
doi: 10.1016/j.scriptamat.2020.06.024
60 Ueda Y, Schmid K, Balden M, et al. Baseline high heat flux and plasma facing materials for fusion [J]. Nucl. Fusion, 2017, 57: 092006
61 Kajita S, De Temmerman G, Morgan T, et al. Thermal response of nanostructured tungsten [J]. Nucl. Fusion, 2014, 54: 033005
62 Nishijima D, Doerner R P, Iwamoto D, et al. Response of fuzzy tungsten surfaces to pulsed plasma bombardment [J]. J. Nucl. Mater., 2013, 434: 230
doi: 10.1016/j.jnucmat.2012.10.042
63 Qu S L. Research on micro-nano scale damage on tungsten surface under helium irradiation [D]. Beijing: Tsinghua University, 2018
63 曲世联. 氦辐照条件下钨材料表面微纳尺度的损伤研究 [D]. 北京: 清华大学, 2018
64 Miyamoto M, Mikami S, Nagashima H, et al. Systematic investigation of the formation behavior of helium bubbles in tungsten [J]. J. Nucl. Mater., 2015, 463: 333
doi: 10.1016/j.jnucmat.2014.10.098
65 Qu S L, Sun H, Kreter A, et al. Degradation of thermal conductivity of the damaged layer of tungsten irradiated by helium-plasma [J]. Fusion Eng. Des., 2018, 137: 97
doi: 10.1016/j.fusengdes.2018.08.014
66 Cahill D G. Thermal conductivity measurement from 30 to 750 K: The 3ω method [J]. Rev. Sci. Instrum., 1990, 61: 802
doi: 10.1063/1.1141498
67 Cui S, Simmonds M, Qin W J, et al. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method [J]. J. Nucl. Mater., 2017, 486: 267
doi: 10.1016/j.jnucmat.2017.01.023
68 Tynan G R, Doerner R P, Barton J, et al. Deuterium retention and thermal conductivity in ion-beam displacement-damaged tungsten [J]. Nucl. Mater. Energy, 2017, 12: 164
69 Marinelli G, Martina F, Lewtas H, et al. Microstructure and thermal properties of unalloyed tungsten deposited by wire + arc additive manufacture [J]. J. Nucl. Mater., 2019, 522: 45
doi: 10.1016/j.jnucmat.2019.04.049
70 Reza A, Zayachuk Y, Yu H B, et al. Transient grating spectroscopy of thermal diffusivity degradation in deuterium implanted tungsten [J]. Scr. Mater., 2020, 174: 6
doi: 10.1016/j.scriptamat.2019.08.014
71 Shi J Q, Wu K T, Shen Y. Radiation hardening effect of tungsten [J]. Trans. Mater. Heat Treat., 2019, 40(11): 1
71 史佳庆, 吴恺慆, 沈 耀. 钨的辐照硬化效应 [J]. 材料热处理学报, 2019, 40(11): 1
72 Terentyev D, Bakaeva A, Pardoen T, et al. Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation [J]. J. Nucl. Mater. 2016, 476: 1
doi: 10.1016/j.jnucmat.2016.04.007
73 Zayachuk Y, Armstrong D E J, Bystrov K, et al. Nanoindentation study of the combined effects of crystallography, heat treatment and exposure to high-flux deuterium plasma in tungsten [J]. J. Nucl. Mater., 2017, 486: 183
doi: 10.1016/j.jnucmat.2017.01.026
74 Fang X F, Kreter A, Rasinski M, et al. Hydrogen embrittlement of tungsten induced by deuterium plasma: Insights from nanoindentation tests [J]. J. Mater. Res., 2018, 33: 3530
doi: 10.1557/jmr.2018.305
75 Gerberich W W, Tymiak N I, Grunlan J C, et al. Interpretations of indentation size effects [J]. J. Appl. Mech., 2002, 69: 433
doi: 10.1115/1.1469004
76 Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
doi: 10.1016/S0022-5096(97)00086-0
77 Durst K, Backes B, Göken M. Indentation size effect in metallic materials: Correcting for the size of the plastic zone [J]. Scr. Mater., 2005, 52: 1093
doi: 10.1016/j.scriptamat.2005.02.009
78 Van Eden G G, Morgan T W, Van Der Meiden H J, et al. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling [J]. Nucl. Fusion, 2014, 54: 123010
doi: 10.1088/0029-5515/54/12/123010
79 Wirtz M, Bardin S, Huber A, et al. Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material [J]. Nucl. Fusion, 2015, 55: 123017
doi: 10.1088/0029-5515/55/12/123017
80 Wirtz M, Linke J, Pintsuk G, et al. Thermal shock behaviour of tungsten after high flux H-plasma loading [J]. J. Nucl. Mater., 2013, 443: 497
doi: 10.1016/j.jnucmat.2013.08.002
81 Wirtz M, Linke J, Pintsuk G, et al. Influence of high flux hydrogen-plasma exposure on the thermal shock induced crack formation in tungsten [J]. J. Nucl. Mater., 2012, 420: 218
doi: 10.1016/j.jnucmat.2011.09.035
82 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 317
82 褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 317
83 Jia Y Z, Liu W, Xu B, et al. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading [J]. Nucl. Fusion, 2015, 55: 113015
doi: 10.1088/0029-5515/55/11/113015
84 Morgan T W, Zielinski J J, Hensen B J, et al. Reduced damage threshold for tungsten using combined steady state and transient sources [J]. J. Nucl. Mater., 2013, 438: S784
doi: 10.1016/j.jnucmat.2013.01.168
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[5] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[7] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[8] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[9] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[10] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[12] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[13] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
[14] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[15] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.