|
|
2000℃高温高承载的Ta-W难熔合金 |
张旭, 田谨, 薛敏涛, 江峰, 李苏植( ), 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军( ) |
西安交通大学 金属材料强度国家重点实验室 西安 710049 |
|
Ta-W Refractory Alloys with High Strength at 2000oC |
ZHANG Xu, TIAN Jin, XUE Mintao, JIANG Feng, LI Suzhi( ), ZHANG Bozhao, DING Jun, LI Xiaoping, MA En, DING Xiangdong, SUN Jun( ) |
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
Xu ZHANG,
Jin TIAN,
Mintao XUE,
Feng JIANG,
Suzhi LI,
Bozhao ZHANG,
Jun DING,
Xiaoping LI,
En MA,
Xiangdong DING,
Jun SUN.
Ta-W Refractory Alloys with High Strength at 2000oC[J]. Acta Metall Sin, 2022, 58(10): 1253-1260.
链接本文:
https://www.ams.org.cn/CN/10.11900/0412.1961.2022.00392
或
https://www.ams.org.cn/CN/Y2022/V58/I10/1253
|
1 |
Liang X B, Wan Y X, Mo J Y, et al. Research progress in novel high-temperature high entropy alloys [J]. Sci. Technol. Rev., 2021, 39(11): 96
|
1 |
梁秀兵, 万义兴, 莫金勇 等. 新型高温高熵合金材料研究进展 [J]. 科技导报, 2021, 39(11): 96
|
2 |
Van Wie D M, D'Alessio S M, White M E. Hypersonic airbreathing propulsion [J]. Johns Hopkins APL Tech. Dig., 2005, 26: 430
|
3 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of Nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
|
3 |
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
|
4 |
Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace [J]. Rare Met. Mater. Eng., 2011, 40(10): 1871
|
4 |
郑 欣, 白 润, 王东辉 等. 航天航空用难熔金属材料的研究进展 [J]. 稀有金属材料与工程, 2011, 40(10): 1871
|
5 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
6 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
|
7 |
Liu Z Q, Qiao J W. Research progress of refractory high-entropy alloys [J]. Mater. China, 2019, 38: 767
|
7 |
刘张全, 乔珺威. 难熔高熵合金的研究进展 [J]. 中国材料进展, 2019, 38: 767
|
8 |
Zhao H C, Liang X B, Qiao Y L, et al. Research progress of low-density and high-entropy alloys [J]. J. Aeronaut. Mater., 2019, 39(5): 61
|
8 |
赵海朝, 梁秀兵, 乔玉林 等. 低密度高熵合金的研究进展 [J]. 航空材料学报, 2019, 39(5): 61
|
9 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
|
10 |
Couzinié J P, Senkov O N, Miracle D B, et al. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys [J]. Data Brief, 2018, 21: 1622
doi: 10.1016/j.dib.2018.10.071
pmid: 30505892
|
11 |
Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of Ti x NbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
|
12 |
Li T X, Jiao W N, Miao J W, et al. A novel ZrNbMoTaW refractory high-entropy alloy with in-situ forming heterogeneous structure [J]. Mater. Sci. Eng., 2021, A827: 142061
|
13 |
Wang Z Q, Wu H H, Wu Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering [J]. Mater. Today, 2022, 54: 83
doi: 10.1016/j.mattod.2022.02.006
|
14 |
Wei Q Q, Xu X D, Shen Q, et al. Metal-carbide eutectics with multiprincipal elements make superrefractory alloys [J]. Sci. Adv., 2022, 8: eabo2068
doi: 10.1126/sciadv.abo2068
|
15 |
Zhou L. Numerical simulation and experimental investigation of micro plasma arc welding of tantalum tungsten alloy thin sheets [D]. Wuhan: Wuhan University of Technology, 2017
|
15 |
周 浪. 钽钨合金薄板微束等离子弧焊数值模拟与实验研究 [D]. 武汉: 武汉理工大学, 2017
|
16 |
Wang H, Zhang X M, Li L P, et al. Industry applications of tantalum and tantalum alloy [J]. Equip. Manuf. Technol., 2013, (8): 115
|
16 |
王 晖, 张小明, 李来平 等. 钽及钽合金在工业装备中的应用 [J]. 装备制造技术, 2013, (8): 115
|
17 |
Wu M H, Li S Q, Xu D M, et al. Mechanical properties of alloy Ta-10W at elevated temperature [J]. Rare Met. Mater. Eng., 2006, 35(suppl. 2) : 64
|
17 |
吴孟海, 李树清, 许德美 等. Ta-10W合金的高温力学性能 [J]. 稀有金属材料与工程, 2006, 35(): 64
|
18 |
Buckman Jr R W. New applications for tantalum and tantalum alloys [J]. JOM, 2000, 52(3): 40
|
19 |
Huang W J, Qiao J W, Chen S H, et al. Preparation, structures and properties of tungsten-containing refractory high entropy alloys [J]. Acta Phys. Sin., 2021, 70(10): 235
|
19 |
黄文军, 乔珺威, 陈顺华 等. 含钨难熔高熵合金的制备、结构与性能 [J]. 物理学报, 2021, 70(10): 235
|
20 |
Li Q Y, Zhang H, Li D C, et al. Manufacture of WNbMoTa high performance high-entropy alloy by laser additive manufacturing [J]. J. Mech. Eng., 2019, 55(15): 10
doi: 10.3901/JME.2019.15.010
|
20 |
李青宇, 张 航, 李涤尘 等. 激光增材制造WNbMoTa高性能高熵合金 [J]. 机械工程学报, 2019, 55(15): 10
doi: 10.3901/JME.2019.15.010
|
21 |
Xu Q, Wang Q, Li J, et al. Effects of Boron on the microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2022, 42(3): 292
|
21 |
徐 琴, 王 琪, 李 娟 等. B对NbMoTiVSi0.2难熔高熵合金组织与力学性能的影响 [J]. 特种铸造及有色合金, 2022, 42(3): 292
|
22 |
Cui Z D, Liu H S. Metal Materials and Heat Treatment [M]. Changsha: Central South University Press, 2010: 95
|
22 |
崔振铎, 刘华山. 金属材料及热处理 [M]. 长沙: 中南大学出版社, 2010: 95
|
23 |
Lassila D H, Goldberg A, Becker R. The effect of grain boundaries on the athermal stress of tantalum and tantalum-tungsten alloys [J]. Metall. Mater. Trans., 2002, 33A: 3457
|
24 |
Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
doi: 10.1016/j.actamat.2014.01.029
|
25 |
Senkov O N, Woodward C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. Mater. Sci. Eng., 2011, A529: 311
|
26 |
Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system [J]. Mater. Sci. Eng., 2013, A565: 51
|
27 |
Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy [J]. Mater. Des., 2015, 81: 87
doi: 10.1016/j.matdes.2015.05.019
|
28 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
doi: 10.1007/s10853-012-6260-2
|
29 |
Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
doi: 10.3390/e18030102
|
30 |
Praveen S, Kim H S. High-entropy alloys: Potential candidates for high-temperature applications—An overview [J]. Adv. Eng. Mater., 2018, 20: 1700645
doi: 10.1002/adem.201700645
|
31 |
Asghari-rad P, Sathiyamoorthi P, Bae J W, et al. Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy [J]. Mater. Sci. Eng., 2019, A744: 610
|
32 |
Park C H, Hong S C, Lee C S. A unified constitutive model for quasi-static flow responses of pure Ta and Ta-W alloys [J]. Mater. Sci. Eng., 2011, A528: 1154
|
33 |
Yin B L, Maresca F, Curtin W A. Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys [J]. Acta Mater., 2020, 188: 486
doi: 10.1016/j.actamat.2020.01.062
|
34 |
Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
doi: 10.1016/j.actamat.2019.10.015
|
35 |
Varvenne C, Luque A, Curtin W A. Theory of strengthening in fcc high entropy alloys [J]. Acta Mater., 2016, 118: 164
doi: 10.1016/j.actamat.2016.07.040
|
36 |
Yin B L, Curtin W A. First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy [J]. npj Comput. Mater., 2019, 5: 14
doi: 10.1038/s41524-019-0151-x
|
37 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
doi: 10.1073/pnas.1919136117
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|