Please wait a minute...
金属学报  2023, Vol. 59 Issue (8): 1001-1014    DOI: 10.11900/0412.1961.2023.00157
  综述 本期目录 | 过刊浏览 |
基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价
李时磊1, 李阳1, 王友康1, 王胜杰1, 何伦华2, 孙光爱3, 肖体乔4, 王沿东1()
1北京科技大学 新金属材料国家重点实验室 北京 100083
2散裂中子源科学中心 东莞 523803
3中国工程物理研究院 核物理与化学研究所 绵阳 621999
4中国科学院上海高等研究院 上海光源科学中心 上海 201204
Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology
LI Shilei1, LI Yang1, WANG Youkang1, WANG Shengjie1, HE Lunhua2, SUN Guang'ai3, XIAO Tiqiao4, WANG Yandong1()
1State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2Spallation Neutron Source Science Center, Dongguan 523803, China
3Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
4Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
引用本文:

李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
Shilei LI, Yang LI, Youkang WANG, Shengjie WANG, Lunhua HE, Guang'ai SUN, Tiqiao XIAO, Yandong WANG. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. Acta Metall Sin, 2023, 59(8): 1001-1014.

全文: PDF(3520 KB)   HTML
摘要: 

多尺度残余应力贯穿于工程部件设计、生产、加工和服役的全生命周期,对工程部件的长寿命可靠服役具有重要意义。残余应力具有多层次、跨尺度的分布特征,在温度、载荷等服役环境作用下发生动态演化,给精确表征带来了很大困难。相较于传统实验室X射线残余应力测量方法,中子衍射、同步辐射高能X射线衍射和同步辐射微束衍射技术在穿透深度、时间分辨率、空间分辨率、环境装置等方面具有显著优势,能够实现宏观残余应力、晶间/相间微观应力、晶内超微观应力3类残余应力的原位无损精确表征。本文详细介绍了上述基于中子/同步辐射大科学装置的多尺度应力表征技术的测量原理、应用范围和典型应用案例,并对相关技术的发展进行了展望。

关键词 残余应力中子衍射同步辐射高能X射线衍射多尺度应力    
Abstract

Multiscale residual stress exists throughout the manufacturing process of engineering components, from design and production to processing and servicing. This stress can impact the machining accuracy, structural load capacity, and fatigue lifespan of these components. Therefore, accurate measurement and regulation of residual stress are critical for ensuring the longevity and reliability of engineering components. However, precise characterization of residual stress is challenging owing to its multilevel and cross-scale distribution traits and dynamic evolution under various conditions, such as temperature and load. Compared with laboratory X-ray measurement methods, neutron diffraction (ND), synchrotron-based high-energy X-ray diffraction (HE-XRD), and synchrotron-based X-ray microbeam diffraction (μ-XRD) techniques offer increased penetration depth and better time and spatial resolutions. In addition, the ability to attach environmental devices enables nondestructive and accurate in situ characterization of three types of residual stresses: macroscopic residual stress, intergranular or interphase microscopic stress, and intragranular ultramicroscopic stress. ND is currently the only nondestructive method capable of accurately measuring three-dimensional (3D) stress at centimeter-level depths within engineering components. HE-XRD, due to its high flux, excellent collimation, and millimeter-level penetration depth for metals, can be utilized for in situ studies of intergranular and interphase stress evolution and partitioning during deformation. The μ-XRD employs a submicron focused beam and differential aperture technology to analyze depth information of a sample. By conducting point-by-point scanning, it can capture 3D distribution of microscopic stress inside a single grain. Furthermore, our group has developed a novel method and device for depth stress characterization based on differential aperture technology under synchrotron-based high-energy monochromatic X-ray transmission geometry, and can measure stress gradients with high precision from the surface to the interior of engineering materials at millimeter-level depths. This study presents the measurement principles, application ranges, and applications of the above-mentioned multiscale stress characterization technologies based on the neutron/synchrotron facilities as well as envisaging the future development of related technologies.

Key wordsresidual stress    neutron diffraction    synchrotron radiation    high-energy X-ray diffraction    multiscale stress
收稿日期: 2023-04-09     
ZTFLH:  TG142.71  
基金资助:国家重点研发计划项目(2021YFA1600600);国家自然科学基金项目(U2141206);国家自然科学基金项目(52171098);国家自然科学基金项目(51921001)
通讯作者: 王沿东,ydwang@ustb.edu.cn,主要从事中子/同步辐射技术应用于金属材料的研究
Corresponding author: WANG Yandong, professor, Tel:(010)82377942, E-mail: ydwang@ustb.edu.cn
作者简介: 李时磊,男,1982年生,副研究员
图1  3类残余应力的作用范围及其导致的衍射峰变化
图2  中子/同步辐射衍射技术在多尺度应力表征上的分辨率和穿透深度
图3  中国绵阳研究堆(CMRR)残余应力中子谱仪(RSND)和中国散裂中子源(CSNS)通用粉末衍射谱仪(GPPD)应力测量系统
图4  粉末涡轮盘三维残余应力的中子测试与模拟结果对比[49]
图5  同步辐射高能X射线衍射(HE-XRD)技术原位拉伸测量示意图及双相不锈钢中的点阵应变演化与应变配分[53]
图6  同步辐射高能X射线衍射技术测量梯度残余应力的原理及结果
图7  同步辐射“成像+衍射”技术联用研究局域应力的原理、装置图、扫描位置及测量结果
图8  X射线衍射差分光阑(DAXM)三维原位表征技术原理图与测量结果[57]
图9  同步辐射透射几何下基于差分光阑技术的深度应力表征方法
1 Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel [J]. Mater. Des., 2011, 32: 3823
doi: 10.1016/j.matdes.2011.03.012
2 Capello E. Residual stresses in turning: Part I: Influence of process parameters [J]. J. Mater. Process. Technol., 2005, 160: 221
doi: 10.1016/j.jmatprotec.2004.06.012
3 Navas G V, Gonzalo O, Bengoetxea I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel [J]. Int. J. Mach. Tools Manuf., 2012, 61: 48
doi: 10.1016/j.ijmachtools.2012.05.008
4 Bussu G, Irving P E. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints [J]. Int. J. Fatigue, 2003, 25: 77
doi: 10.1016/S0142-1123(02)00038-5
5 Webster G A, Ezeilo A N. Residual stress distributions and their influence on fatigue lifetimes [J]. Int. J. Fatigue, 2001, 23: 375
6 Torres M A S, Voorwald H J C. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel [J]. Int. J. Fatigue, 2002, 24: 877
doi: 10.1016/S0142-1123(01)00205-5
7 Miao B R, Luo Y X, Peng Q M, et al. Multidisciplinary design optimization of lightweight carbody for fatigue assessment [J]. Mater. Des., 2020, 194: 108910
doi: 10.1016/j.matdes.2020.108910
8 Niu C L, Xie S M, Zhang T. Research on anti-fatigue design method of welded structure oriented to stiffness coordination strategy [J]. Int. J. Struct. Integr., 2022, 13: 196
doi: 10.1108/IJSI-10-2021-0115
9 Oehlers D J, Ghosh A, Wahab M. Residual strength approach to fatigue design and analysis [J]. J. Struct. Eng., 1995, 121: 1271
doi: 10.1061/(ASCE)0733-9445(1995)121:9(1271)
10 Zahl D B, McMeeking R M. The influence of residual stress on the yielding of metal matrix composites [J]. Acta Metall. Mater., 1991, 39: 1117
doi: 10.1016/0956-7151(91)90199-B
11 Clifford S, Jansson N, Yu W, et al. Thermoviscoelastic anisotropic analysis of process induced residual stresses and dimensional stability in real polymer matrix composite components [J]. Composites, 2006, 37A: 538
12 Samadi F, Mourya J, Wheatley G, et al. An investigation on residual stress and fatigue life assessment of T-shape welded joints [J]. Eng. Fail. Anal., 2022, 141: 106685
doi: 10.1016/j.engfailanal.2022.106685
13 Fan K F, Liu D X, Liu Y J, et al. Competitive effect of residual stress and surface roughness on the fatigue life of shot peened S42200 steel at room and elevated temperature [J]. Tribol. Int., 2023, 183: 108422
doi: 10.1016/j.triboint.2023.108422
14 Zhang W Q, Wang X L, Wang S Y, et al. Combined effects of machining-induced residual stress and external load on SCC initiation and early propagation of 316 stainless steel in high temperature high pressure water [J]. Corros. Sci., 2021, 190: 109644
doi: 10.1016/j.corsci.2021.109644
15 Abdul Jawwad A K, Mahdi M, Alshabatat N. The role of service-induced residual stresses in initiating and propagating stress corrosion cracking (SCC) in a 316 stainless steel pressure-relief-valve nozzle set [J]. Eng. Fail. Anal., 2019, 105: 1229
doi: 10.1016/j.engfailanal.2019.07.062
16 Yazdanpanah A, Franceschi M, Bergamo G, et al. On the exceptional stress corrosion cracking susceptibility of selective laser melted 316L stainless steel under the individual effect of surface residual stresses [J]. Eng. Fail. Anal., 2022, 136: 106192
doi: 10.1016/j.engfailanal.2022.106192
17 Macherauch E. Residual stresses [A]. Application of Fracture Mechanics to Materials and Structures [M]. Dordrecht: Springer, 1984: 157
18 Chava S, Namilae S. Continuous evolution of processing induced residual stresses in composites: An in-situ approach [J]. Composites, 2021, 145A: 106368
19 Rossini N S, Dassisti M, Benyounis K Y, et al. Methods of measuring residual stresses in components [J]. Mater. Des., 2012, 35: 572
doi: 10.1016/j.matdes.2011.08.022
20 Guo J, Fu H Y, Pan B, et al. Recent progress of residual stress measurement methods: A review [J]. Chin. J. Aeronaut., 2021, 34: 54
21 Holmberg J, Steuwer A, Stormvinter A, et al. Residual stress state in an induction hardened steel bar determined by synchrotron- and neutron diffraction compared to results from lab-XRD [J]. Mater. Sci. Eng., 2016, A667: 199
22 Ganguly S, Stelmukh V, Edwards L. et al. Analysis of residual stress in metal-inert-gas-welded Al-2024 using neutron and synchrotron X-ray diffraction [J]. Mater. Sci. Eng., 2008, A491: 248
23 Paradowska A, Finlayson T R, Price J W H. et al. Investigation of reference samples for residual strain measurements in a welded specimen by neutron and synchrotron X-ray diffraction [J]. Physica, 2006, 385-386B: 904
24 Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
doi: 10.1016/j.matdes.2016.07.078
25 Chen B, Skouras A, Wang Y Q, et al. In situ neutron diffraction measurement of residual stress relaxation in a welded steel pipe during heat treatment [J]. Mater. Sci. Eng., 2014, A590: 374
26 Jia N, Cong Z H, Sun X, et al. An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels [J]. Acta Mater., 2009, 57: 3965
doi: 10.1016/j.actamat.2009.05.002
27 Zhang M H, Li L F, Ding J, et al. Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction [J]. Acta Mater., 2017, 141: 294
doi: 10.1016/j.actamat.2017.09.030
28 Zhang Y B, Andriollo T, Fæster S, et al. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron [J]. Acta Mater., 2016, 121: 173
doi: 10.1016/j.actamat.2016.09.009
29 Guo Y, Collins D M, Tarleton E, et al. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D [J]. Acta Mater., 2015, 96: 229
doi: 10.1016/j.actamat.2015.05.041
30 Johnson M W, Edwards L, Withers P J. ENGIN—A new instrument for engineers [J]. Physica, 1997, 234-236B: 1141
31 Withers P J, Webster P J. Neutron and synchrotron X-ray strain scanning [J]. Strain, 2001, 37: 19
doi: 10.1111/str.2001.37.issue-1
32 Pintschovius L, Jung V, Macherauch E, et al. Residual stress measurements by means of neutron diffraction [J]. Mater. Sci. Eng., 1983, 61: 43
doi: 10.1016/0025-5416(83)90124-6
33 Wang X L, Holden T, Stoica A D, et al. First results from the VULCAN diffractometer at the SNS [J]. Mater. Sci. Forum, 2010, 652: 105
doi: 10.4028/www.scientific.net/MSF.652
34 Stefanus H, Takayoshi I, Kazuya A, et al. Current status of engineering materials diffractometer at J-PARC [J]. Mater. Sci. Forum, 2011, 681: 443
doi: 10.4028/www.scientific.net/MSF.681
35 Gao J B, Zhang S Y, Zhou L, et al. Novel engineering materials diffractometer fabricated at the China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2022, 1034A: 166817
36 Mori T, Withers P J. Residual stress: Interphase stresses [A]. Encyclopedia of Materials: Science and Technology [M]. 2nd Ed., Amsterdam: Elsevier, 2001: 8113
37 Withers P J, Bhadeshia H K D H. Residual stress. Part 1—Measurement techniques [J]. Mater. Sci. Technol., 2001, 17: 355
doi: 10.1179/026708301101509980
38 Withers P J, Bhadeshia H K D H. Residual stress. Part 2—Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366
doi: 10.1179/026708301101510087
39 Hutchings M T, Krawitz A D. Measurement of Residual and Applied Stress Using Neutron Diffraction [M]. Dordrecht: Springer, 1992: 1
40 Hutchings M T, Withers P J, Holden T M, et al. Introduction to the Characterization of Residual Stress by Neutron Diffraction [M]. Boca Raton: CRC Press, 2005: 1
41 Winholtz R A, Krawitz A D. Implications of equilibrium on principal macrostresses measured by neutron diffraction [J]. Mater. Sci. Eng., 1996, A221: 33
42 Winholtz R A, Krawitz A D. The effect of assuming the principal directions in neutron diffraction measurement of stress tensors [J]. Mater. Sci. Eng., 1996, A205: 257
43 Pratihar S, Turski M, Edwards L, et al. Neutron diffraction residual stress measurements in a 316L stainless steel bead-on-plate weld specimen [J]. Int. J. Press. Vessels Pip., 2009, 86: 13
doi: 10.1016/j.ijpvp.2008.11.010
44 Gnäupel-Herold T, Creuziger A A, Iadicola M. A model for calculating diffraction elastic constants [J]. J. Appl. Cryst., 2012, 45: 197
doi: 10.1107/S0021889812002221
45 Gnäupel-Herold T. ISODEC: Software for calculating diffraction elastic constants [J]. J. Appl. Crystallogr., 2012, 45: 573
doi: 10.1107/S0021889812014252
46 Inspection and Quarantine of the People's Republic of China, AdministrationStandardization. Non-destructive testing—Standards test method for determining residual stresses by neutron diffraction. [S]. Beijing: Standards Press of China, 2011
46 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 无损检测 测量残余应力的中子衍射方法. [S]. 北京: 中国标准出版社, 2011
47 Withers P J, Preuss M, Steuwer A, et al. Methods for obtaining the strain-free lattice parameter when using diffraction to determine residual stress [J]. J. Appl. Crystallogr., 2007, 40: 891
doi: 10.1107/S0021889807030269
48 Liu X L, Luzin V, Qi H L, et al. Mapping of three-dimensional residual stresses by neutron diffraction in nickel-based superalloy discs prepared under different quenching conditions [J]. Mater. Today Commun., 2022, 32: 103876
49 Zhang Z W. Study on the evolution of three-dimensional residual stress field in turbine discs by using neutron/X-ray diffraction and finite element method [D]. Beijing: University of Science and Technology Beijing, 2022
49 张哲维. 基于中子/X射线衍射与有限元法的涡轮盘模拟件三维残余应力场演变研究 [D]. 北京: 北京科技大学, 2022
50 Nishida M, Jing T, Muslih M R, et al. Residual stress measurement of titanium casting alloy by neutron diffraction [J]. AIP Conf. Proc., 2008, 989: 101
51 Ren Y. High-energy synchrotron X-ray diffraction and its application to in situ structural phase-transition studies in complex sample environments [J]. JOM, 2012, 64: 140
doi: 10.1007/s11837-011-0218-8
52 Rakowski R, Golovin G, O'Neal J, et al. Single-shot structural analysis by high-energy X-ray diffraction using an ultrashort all-optical source [J]. Sci. Rep., 2017, 7: 16603
doi: 10.1038/s41598-017-16477-0 pmid: 29192189
53 Wang T C. A study on microscopic mechanism of brittle fracture of thermally aged duplex stainless steels [D]. Beijing: University of Science and Technology Beijing, 2019
53 王天成. 热老化双相不锈钢脆性断裂的微观机制研究 [D]. 北京: 北京科技大学, 2019
54 Li R G, Wang Y K, Xu N, et al. Unveiling the origins of work-hardening enhancement and mechanical instability in laser shock peened titanium [J]. Acta Mater., 2022, 229: 117810
doi: 10.1016/j.actamat.2022.117810
55 Liu W J, Ice G E. X-ray laue diffraction microscopy in 3D at the advanced photon source [A]. Strain and Dislocation Gradients from Diffraction [C]. London: Imperial College Press, 2014: 53
56 Liu W, Zschack P, Tischler J, et al. X‐ray Laue diffraction microscopy in 3D at the advanced photon source [J]. AIP Conf. Proc., 2011, 1365: 108
57 Li R G. Localized deformation and damage of FCC/HCP metallic materials investigated by synchrotron-based X-ray diffraction [D]. Beijing: University of Science and Technology Beijing, 2020
57 李润光. FCC/HCP金属材料局域形变与损伤的同步辐射衍射研究 [D]. 北京: 北京科技大学, 2020
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[6] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[7] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[8] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[9] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[10] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[11] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[12] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[13] 曾桥石, 尹梓梁, 楼鸿波. 金属玻璃中的非晶多形态转变[J]. 金属学报, 2021, 57(4): 491-500.
[14] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[15] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.