|
|
新型钴基与Nb-Si基高温合金扩散动力学研究进展 |
刘兴军1,2,3( ), 魏振帮3,4, 卢勇3,4, 韩佳甲3,4, 施荣沛1,2, 王翠萍3,4( ) |
1哈尔滨工业大学(深圳) 材料基因与大数据研究院 深圳 518055 2哈尔滨工业大学(深圳) 材料科学与工程学院 深圳 518055 3厦门大学 材料学院 福建省表界面工程与高性能材料重点实验室 厦门 361005 4厦门大学 厦门市高性能金属材料重点实验室 厦门 361005 |
|
Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys |
LIU Xingjun1,2,3( ), WEI Zhenbang3,4, LU Yong3,4, HAN Jiajia3,4, SHI Rongpei1,2, WANG Cuiping3,4( ) |
1Institute of Materials Genome and Big Data, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China 2School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China 3College of Materials and Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, China 4Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen 361005, China |
引用本文:
刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
Xingjun LIU,
Zhenbang WEI,
Yong LU,
Jiajia HAN,
Rongpei SHI,
Cuiping WANG.
Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. Acta Metall Sin, 2023, 59(8): 969-985.
1 |
Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: Wiley, 1987: 1
|
2 |
Roskill Information Services. Superalloys: An Introduction [M]. Lasne, Belgium: Tantalum-Niobium International Study Center, 2016: 10
|
3 |
Shi C X, Zhong Z Z. Fifty Years of High Temperature Alloys in China [M]. Beijing: Metallurgical Industry Press, 2006: 1
|
3 |
师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 1
|
4 |
Huang W, Chang Y A. A thermodynamic analysis of the Ni-Al system [J]. Intermetallics, 1998, 6: 487
doi: 10.1016/S0966-9795(97)00099-X
|
5 |
Yokokawa T, Harada H, Kawagishi K, et al. Advanced alloy design program and improvement of sixth-generation Ni-base single crystal superalloy TMS-238 [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 122
|
6 |
Bhadeshia H K D H. Nickel based superalloys [M]. Cambridge: University of Cambridge, 2003: 1
|
7 |
Kawagishi K, Yeh A C, Yokokawa T, et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 [A]. Superalloys 2012 [C]. Hoboken: John Wiley & Sons, Inc., 2012: 189
|
8 |
Liu L, Zhang J, Ai C. Nickel-based superalloys [A]. Reference Module in Materials Science and Materials Engineering [M]. Amsterdam: Elsevier, 2020: 1
|
9 |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
doi: 10.1557/jmr.2018.153
|
10 |
Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326: 1068
doi: 10.1126/science.1179327
pmid: 19965415
|
11 |
Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
|
12 |
Lass E A, Grist R D, Williams M E. Phase equilibria and microstructural evolution in ternary Co-Al-W between 750 and 1100oC [J]. J. Phase Equilib. Diffus., 2016, 37: 387
doi: 10.1007/s11669-016-0461-3
|
13 |
Pollock T M, Dibbern J, Tsunekane M, et al. New Co-based γ-γ′ high-temperature alloys [J]. JOM, 2010, 62(1): 58
|
14 |
Klein L, Bauer A, Neumeier S, et al. High temperature oxidation of γ/γ′-strengthened Co-base superalloys [J]. Corros. Sci., 2011, 53: 2027
doi: 10.1016/j.corsci.2011.02.033
|
15 |
Liu X J, Chen Z F, Chen Y C, et al. Multicomponent Co-Ti-based superalloy with high solvus temperature and low lattice misfit [J]. Mater. Lett., 2021, 284: 128910
doi: 10.1016/j.matlet.2020.128910
|
16 |
Ishida K. Intermetallic compounds in Co-base alloys—Phase stability and application to superalloys [J]. MRS Online Proc. Libr., 2008, 1128: 606
|
17 |
Epishin A, Petrushin N, Nolze G, et al. Investigation of the γ′- strengthened quaternary Co-based alloys Co-Al-W-Ta [J]. Metall. Mater. Trans., 2018, 49A: 4042
|
18 |
Zhou P J, Zhai D R, Guo Y H, et al. The role of Ti on reducing the misfit of a Co-Al-W alloy [A]. TMS 2014: 143rd Annual Meeting & Exhibition [C]. Cham: Springer, 2016: 667
|
19 |
Povstugar I, Zenk C H, Li R, et al. Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ′ strengthened Co base superalloys [J]. Mater. Sci. Technol., 2016, 32: 220
doi: 10.1179/1743284715Y.0000000112
|
20 |
Yoo B, Im H J, Seol J B, et al. On the microstructural evolution and partitioning behavior of L12-structured γ′-based Co-Ti-W alloys upon Cr and Al alloying [J]. Intermetallics, 2019, 104: 97
doi: 10.1016/j.intermet.2018.10.027
|
21 |
Weiser M, Virtanen S. Influence of W content on the oxidation behaviour of ternary γ'-strengthened Co-based model alloys between 800 and 900oC [J]. Oxid. Met., 2019, 92: 541
doi: 10.1007/s11085-019-09934-w
|
22 |
Xu Y T, Xia T D, Yan J Q, et al. Research on oxidation behavior of novel Co-Al-W alloy at high temperature [J]. Rare Met. Mater. Eng., 2011, 40: 1742
|
22 |
徐仰涛, 夏天东, 闫健强 等. 新型Co-Al-W合金高温氧化行为研究 [J]. 稀有金属材料与工程, 2011, 40: 1742
|
23 |
Ma C M, Yang S T, Zhang Y H, et al. Effects of temperature and Ti addition on high-temperature oxidation behaviors of Co-Al-W based superalloys [J]. Anti-Corros. Methods Mater., 2020, 67: 445
doi: 10.1108/ACMM-04-2020-2298
|
24 |
Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
doi: 10.1016/j.matdes.2020.108996
|
25 |
Ruan J J, Xu W W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods [J]. Acta Mater., 2020, 186: 425
doi: 10.1016/j.actamat.2020.01.004
|
26 |
Yu J X, Guo S, Chen Y C, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning [J]. Intermetallics, 2019, 110: 106466
doi: 10.1016/j.intermet.2019.04.009
|
27 |
Tsakiropoulos P. Refractory metal (Nb) intermetallic composites, high entropy alloys, complex concentrated alloys and the alloy design methodology NICE—Mise-en-scène patterns of thought and progress [J]. Materials, 2021, 14: 989
doi: 10.3390/ma14040989
|
28 |
Mo T T, Song N, Xie G, et al. The study of crystallization process of high-purity silica at high temperature [J]. Light Met., 2015, (4): 49
|
28 |
莫腾腾, 宋 宁, 谢 刚 等. 高温下高纯二氧化硅的结晶过程研究 [J]. 轻金属, 2015, (4): 49
|
29 |
Esparza N, Rangel V, Gutierrez A, et al. A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb-Cr-Si system [J]. Mater. High Temp., 2016, 33: 105
doi: 10.1179/1878641315Y.0000000012
|
30 |
Vazquez A, Varma S K. High-temperature oxidation behavior of Nb-Si-Cr alloys with Hf additions [J]. J. Alloys Compd., 2011, 509: 7027
doi: 10.1016/j.jallcom.2011.02.174
|
31 |
Li Y, Zhu W F, Li Q, et al. Phase equilibria in the Nb-Ti side of the Nb-Si-Ti system at 1200oC and its oxidation behavior [J]. J. Alloys Compd., 2017, 704: 311
doi: 10.1016/j.jallcom.2017.02.007
|
32 |
Li N, Zhang B D, Hang H, et al. Discussion of effects of Hf on the high temperature oxidation of Nb-based alloy [J]. New Technol. New Process, 2015, (4): 103
|
32 |
李 宁, 张宝东, 黄 辉 等. 铪提高铌硅基合金高温抗氧化性能的机理探讨 [J]. 新技术新工艺, 2015, (4): 103
|
33 |
Han G M, Li F, Sun B D. Research progress in ultrahigh temperature Nb-Si based alloys [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 1071
|
33 |
韩国明, 李 飞, 孙宝德. Nb-Si基超高温合金研究进展 [J]. 特种铸造及有色合金, 2018, 38: 1071
doi: 10.15980/j.tzzz.2018.10.008
|
34 |
Kim W Y, Yeo I D, Ra T Y, et al. Effect of V addition on microstructure and mechanical property in the Nb-Si alloy system [J]. J. Alloys Compd., 2004, 364: 186
doi: 10.1016/S0925-8388(03)00495-X
|
35 |
Kim W Y, Kim H S, Kim S K, et al. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy [J]. Mater. Sci. Forum, 2005, 486-487: 342
doi: 10.4028/www.scientific.net/MSF.486-487
|
36 |
Bewlay B P, Whiting P W, Davis A W, et al. Creep mechanisms in niobium-silicide based in-situ composites [J]. MRS Online Proc. Libr., 1998, 552: 6111
|
37 |
Neumann G, Tuijn C. Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data [M]. London: Pergamon, 2011: 1
|
38 |
Chen J, Liu Y J, Sheng G, et al. Atomic mobilities, interdiffusivities and their related diffusional behaviors in fcc Co-Cr-Ni alloys [J]. J. Alloys Compd., 2015, 621: 428
doi: 10.1016/j.jallcom.2014.09.139
|
39 |
Liu B S, Ren Y P, Li H X, et al. Interdiffusion and impurity diffusion behavior in polycrystalline Mg-Y binary system [J]. J. Alloys Compd., 2021, 867: 159070
doi: 10.1016/j.jallcom.2021.159070
|
40 |
Hirano K, Fujikawa S. Impurity diffusion in aluminum [J]. J. Nucl. Mater., 1978, 69-70: 564
doi: 10.1016/0022-3115(78)90275-1
|
41 |
Mehrer H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes [M]. Berlin, Heidelberg: Springer, 2007: 1
|
42 |
Zhang Q F, Chen Z Q, Zhong W, et al. Accurate and efficient measurement of impurity (dilute) diffusion coefficients without isotope tracer experiments [J]. Scr. Mater., 2017, 128: 32
doi: 10.1016/j.scriptamat.2016.09.040
|
43 |
Askill J. Tracer Diffusion Data for Metals, Alloys, and Simple Oxides [M]. Boston: Springer, 1970: 1
|
44 |
Askill J. Correlation of self diffusion data in metals as a function of thermal expansion coefficient [J]. Phys. Stat. Solidi, 1965, 11B: K49
|
45 |
Dushman S, Langmuir I. The diffusion coefficient in solids and its temperature coefficient [J]. Phys. Rev., 1922, 20: 113
doi: 10.1103/PhysRevA.20.113
|
46 |
Leclaire A D. Diffusion in Body-Centered Cubic Metals [M]. Metals Park, Ohio: American Society for Metals, 1965: 1
|
47 |
Neumann G, Tuijn C. Application of the thermodynamic model to the diffusion of substitutionally dissolved impurities in lead [J]. Physica, 2002, 319B: 343
|
48 |
Koerner R M, Lord Jr A E, Hsuan Y H. Arrhenius modeling to predict geosynthetic degradation [J]. Geotext. Geomembr., 1992, 11: 151
doi: 10.1016/0266-1144(92)90042-9
|
49 |
Han J J, Wang C P, Liu X J. A modified model to predict self-diffusion coefficients in metastable FCC, BCC and HCP structures [J]. J. Phase Equilib. Diffus., 2013, 34: 17
doi: 10.1007/s11669-012-0185-y
|
50 |
Leclaire A D, Lidiard A B. LIII. Correlation effects in diffusion in crystals [J]. Philos. Mag., 1956, 1A: 518
|
51 |
Neumann G, Hirschwald W. Impurity diffusion in F.C.C. metals [J]. Phys. Stat. Solidi, 1973, 55B: 99
|
52 |
Le Claire A D. On the theory of impurity diffusion in metals [J]. Philos. Mag., 1962, 7A: 141
|
53 |
Neumann G. A model for the calculation of monovacancy and divacancy contributions to the impurity diffusion in noble metals [J]. Phys. Stat. Solidi, 1987, 144B: 329
|
54 |
Neumann G, Tölle V, Tuijn C, et al. A modified thermodynamic model for the impurity diffusion via nearest- and next-nearest neighbour jumps in body-centred cubic metals of the groups V and VI [J]. Physica, 1997, 233B: 161
|
55 |
Lazarus D. Effect of screening on solute diffusion in metals [J]. Phys. Rev., 1954, 93: 973
doi: 10.1103/PhysRev.93.973
|
56 |
Rabinovitch A, Pelleg J. A simple model for impurity diffusion [J]. J. Phys., 1977, 7F: 1853
|
57 |
Shang S L, Zhou B C, Wang W Y, et al. A comprehensive first-principles study of pure elements: Vacancy formation and migration energies and self-diffusion coefficients [J]. Acta Mater., 2016, 109: 128
doi: 10.1016/j.actamat.2016.02.031
|
58 |
Mantina M, Wang Y, Chen L Q, et al. First principles impurity diffusion coefficients [J]. Acta Mater., 2009, 57: 4102
doi: 10.1016/j.actamat.2009.05.006
|
59 |
Andersson D A, Simak S I. Monovacancy and divacancy formation and migration in copper: A first-principles theory [J]. Phys. Rev., 2004, 70B: 115108
|
60 |
Hargather C Z, Shang S L, Liu Z K. A comprehensive first-principles study of solute elements in dilute Ni alloys: Diffusion coefficients and their implications to tailor creep rate [J]. Acta Mater., 2018, 157: 126
doi: 10.1016/j.actamat.2018.07.020
|
61 |
Ganeshan S, Hector L G, Liu Z K. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model [J]. Acta Mater., 2011, 59: 3214
doi: 10.1016/j.actamat.2011.01.062
|
62 |
Lu H J, Wu H, Zou N, et al. First-principles investigation on diffusion mechanism of alloying elements in dilute Zr alloys [J]. Acta Mater., 2018, 154: 161
doi: 10.1016/j.actamat.2018.05.015
|
63 |
Zou N, Lu H J, Lu X G. Impurity diffusion coefficients in BCC Nb from first-principles calculations [J]. J. Alloys Compd., 2019, 803: 684
doi: 10.1016/j.jallcom.2019.06.293
|
64 |
Zeng Y Z, Bai K W. High-throughput prediction of activation energy for impurity diffusion in fcc metals of Group I and VIII [J]. J. Alloys Compd., 2015, 624: 201
doi: 10.1016/j.jallcom.2014.11.091
|
65 |
Wu H, Lorenson A, Anderson B, et al. Robust FCC solute diffusion predictions from ab-initio machine learning methods [J]. Comput. Mater. Sci., 2017, 134: 160
doi: 10.1016/j.commatsci.2017.03.052
|
66 |
Lu H J, Zou N, Jacobs R, et al. Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion [J]. Comput. Mater. Sci., 2019, 169: 109075
doi: 10.1016/j.commatsci.2019.06.010
|
67 |
Wei Z B, Yu J X, Lu Y, et al. Prediction of diffusion coefficients in fcc, bcc and hcp phases remained stable or metastable by the machine-learning methods [J]. Mater. Des., 2021, 198: 109287
doi: 10.1016/j.matdes.2020.109287
|
68 |
Smith W F, Hashemi J. Foundations of Materials Science and Engineering [M]. 4th Ed., New York: McGraw-Hill Publishing, 2006: 1
|
69 |
Matano C. On the relation between diffusion-coefficients and concentrations of solid metals [J]. Jpn. J. Appl. Phys., 1933, 8: 109
|
70 |
den Broeder F J A. A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems [J]. Scr. Metall., 1969, 3: 321
doi: 10.1016/0036-9748(69)90296-8
|
71 |
Kirkaldy J S. Diffusion in multicomponent metallic systems [J]. Can. J. Phys., 1957, 35: 435
doi: 10.1139/p57-047
|
72 |
Whittle D P, Green A. The measurement of diffusion coefficients in ternary systems [J]. Scr. Metall., 1974, 8: 883
doi: 10.1016/0036-9748(74)90311-1
|
73 |
Chen W M, Zhang L J, Du Y, et al. A pragmatic method to determine the composition-dependent interdiffusivities in ternary systems by using a single diffusion couple [J]. Scr. Mater., 2014, 90-91: 53
doi: 10.1016/j.scriptamat.2014.07.016
|
74 |
Zhong J, Chen W M, Zhang L J. HitDIC: A free-accessible code for high-throughput determination of interdiffusion coefficients in single solution phase [J]. Calphad, 2018, 60: 177
doi: 10.1016/j.calphad.2017.12.004
|
75 |
Zhong J, Li Q, Deng C M, et al. Automated development of an accurate diffusion database in FCC AlCoCrFeNi high-entropy alloys from a big dataset of composition profiles [J]. Materials, 2022, 15: 3240
doi: 10.3390/ma15093240
|
76 |
Liu F, Wang Z X, Wang Z, et al. High‐throughput method—Accelerated design of Ni-based superalloys [J]. Adv. Funct. Mater., 2022, 32: 2109367
doi: 10.1002/adfm.v32.28
|
77 |
Heumann T. Zur berechnung von diffusionskoeffizienten bei ein- und mehrphasiger diffusion in festen legierungen [J]. Z. Phys. Chem., 1952, 201: 168
doi: 10.1515/zpch-1952-20114
|
78 |
Fitzer E, Schmidt F K. Die diffusion von silizium in Nb5Si3: The diffusion of silicon in Nb5Si3 [J]. Monatsh. Chem./Chem. Mon., 1971, 102: 1608
|
79 |
Darken L S. Diffusion, mobility and their interrelation through free energy in binary metallic system [J]. Trans. AIME, 1948, 175: 184
|
80 |
Marian J, Wirth B D, Odette G R, et al. Cu diffusion in α-Fe: Determination of solute diffusivities using atomic-scale simulations [J]. Comput. Mater. Sci., 2004, 31: 347
doi: 10.1016/j.commatsci.2004.03.023
|
81 |
Pan L. Atomic simulations of the diffusion process of Cr in Fe-Cr alloy [D]. Nanjing: Nanjing University of Science and Technology, 2015
|
81 |
潘 龙. Cr在FeCr合金中扩散过程的原子尺度模拟研究 [D]. 南京: 南京理工大学, 2015
|
82 |
Maksimenko V N, Lipnitskii A G, Saveliev V N, et al. Prediction of the diffusion characteristics of the V-Cr system by molecular dynamics based on N-body interatomic potentials [J]. Comput. Mater. Sci., 2021, 198: 110648
doi: 10.1016/j.commatsci.2021.110648
|
83 |
Huang X S, Liu L H, Duan X B, et al. Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential [J]. Mater. Des., 2021, 202: 109560
doi: 10.1016/j.matdes.2021.109560
|
84 |
Wei Z B, Wang C P, Xu W W, et al. A predictive model of impurity diffusion coefficients in face-centered-cubic metallic systems based on machine-learning [J]. Calphad, 2021, 72: 102251
doi: 10.1016/j.calphad.2021.102251
|
85 |
Wei Z B. Establishment and application of kinetic databases for the novel Co-based and Nb-Si-based high-temperature alloys [D]. Xiamen: Xiamen University, 2022
|
85 |
魏振帮. 新型Co基和Nb-Si基高温合金扩散动力学数据库的建立及应用 [D]. 厦门. 厦门大学, 2022
|
86 |
Zhang L, Du Y, Ouyang Y, et al. Atomic mobilities, diffusivities and simulation of diffusion growth in the Co-Si system [J]. Acta Mater., 2008, 56: 3940
doi: 10.1016/j.actamat.2008.04.017
|
87 |
Cui Y W, Jiang M, Ohnuma I, et al. Computational study of atomic mobility for fcc phase of Co-Fe and Co-Ni binaries [J]. J. Phase Equilib. Diffus., 2008, 29: 2
doi: 10.1007/s11669-007-9238-z
|
88 |
Cui Y W, Tang B, Kato R, et al. Interdiffusion and atomic mobility for face-centered-cubic Co-Al alloys [J]. Metall. Mater. Trans., 2011, 42A: 2542
|
89 |
Liu Y J, Zhang L J, Pan T Y, et al. Study of diffusion mobilities of Nb and Zr in bcc Nb-Zr alloys [J]. Calphad, 2008, 32: 455
doi: 10.1016/j.calphad.2008.06.008
|
90 |
Liu Y J, Pan T Y, Zhang L J, et al. Kinetic modeling of diffusion mobilities in bcc Ti-Nb alloys [J]. J. Alloys Compd., 2009, 476: 429
doi: 10.1016/j.jallcom.2008.09.019
|
91 |
Liu Y J, Yu D, Zhang L J, et al. Atomic mobilities and diffusional growth in solid phases of the V-Nb and V-Zr systems [J]. Calphad, 2009, 33: 425
doi: 10.1016/j.calphad.2008.12.008
|
92 |
Yang Y L, Shi Z, Luo Y S, et al. Interdiffusion and atomic mobility studies in Ni-rich fcc Ni-Co-Al alloys [J]. J. Phase Equilib. Diffus., 2016, 37: 269
doi: 10.1007/s11669-016-0453-3
|
93 |
Wang C P, Qin S Y, Lu Y, et al. Interdiffusion and atomic mobilities in fcc Co-Cr-Mo Alloys [J]. J. Phase Equilib. Diffus., 2018, 39: 437
doi: 10.1007/s11669-018-0657-9
|
94 |
Wang C P, Yu X, Qin S Y, et al. Interdiffusion and atomic mobilities in fcc Ni-Mo-Ta alloys [J]. J. Phase Equilib. Diffus., 2019, 40: 432
doi: 10.1007/s11669-019-00739-7
|
95 |
Liu X J, Yu Y, Lu Y, et al. Interdiffusion and atomic mobilities in Co-rich fcc Co-Cr-V alloys [J]. Rare Met. Mater. Eng., 2018, 47: 3251
doi: 10.1016/S1875-5372(18)30228-5
|
96 |
Wang C P, Qin S Y, Lu Y, et al. Interdiffusion and atomic mobilities in Ni-rich fcc Ni-Cr-W Alloys [J]. Rare Met. Mater. Eng., 2020, 49: 441
|
97 |
Wei Z B, Wang C P, Qin S Y, et al. Assessment of atomic mobilities for bcc phase in the Ti-Nb-V system [J]. J. Phase Equilib. Diffus., 2020, 41: 191
doi: 10.1007/s11669-020-00801-9
|
98 |
Chen Q, Jou H J, Sterner G. TC-PRISMA User's Guide and Examples [M]. Stockholm: Thermo-Calc Software AB, 2011: 1
|
99 |
Wang Y. Study on the thermodynamics of the Ni-Co-Al-Mo-W system and the diffusion kinetics of its fcc phase [D]. Shanghai: Shanghai University, 2018
|
99 |
王 杨. Ni-Co-Al-Mo-W体系热力学及其fcc相扩散动力学研究 [D]. 上海: 上海大学, 2018
|
100 |
Azzam A, Philippe T, Hauet A, et al. Kinetics pathway of precipitation in model Co-Al-W superalloy [J]. Acta Mater., 2018, 145: 377
doi: 10.1016/j.actamat.2017.12.032
|
101 |
Wang W, Hou Z Y, Lizárraga R, et al. An experimental and theoretical study of duplex fcc + hcp cobalt based entropic alloys [J]. Acta Mater., 2019, 176: 11
doi: 10.1016/j.actamat.2019.06.041
|
102 |
Eiken J, Böttger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J]. Phys. Rev., 2006, 73E: 066122
|
103 |
Rabbe D, translated by Xiang J Z, Wu X H. Computational Materials Science [M]. Beijing: Chemical Industry Press, 2002: 1
|
103 |
Rabbe D著, 项金钟, 吴兴惠 译. 计算材料学 [M]. 北京: 化学工业出版社, 2002: 1
|
104 |
Yang Y F, Xie M, Cheng Y, et al. Research status of numerical simulation of solidification microstructure [J]. Mater. Rep., 2014, 28(21): 24
|
104 |
杨云峰, 谢 明, 程 勇 等. 金属凝固微观组织数值模拟研究现状 [J]. 材料导报, 2014, 28(21): 24
|
105 |
Shi S J, Yan Z W, Li Y S, et al. Phase-field simulation of early-stage kinetics evolution of γ' phase in medium supersaturation Co-Al-W alloy [J]. J. Mater. Sci. Technol., 2020, 53: 1
doi: 10.1016/j.jmst.2020.02.038
|
106 |
Chen J, Guo M, Yang M, et al. Phase-field simulation of γ' coarsening behavior in cobalt-based superalloy [J]. Comput. Mater. Sci., 2021, 191: 110358
doi: 10.1016/j.commatsci.2021.110358
|
107 |
Liu X J, Kong H F, Lu Y, et al. Phase-field simulation on microstructure evolution of D019 phase in γ/γ′ structure of Co-Al-W superalloys [J]. Prog. Nat. Sci.: Mater. Int., 2020, 30: 382
doi: 10.1016/j.pnsc.2020.05.004
|
108 |
Wang C, Ali M A, Gao S W, et al. Combined phase-field crystal plasticity simulation of P- and N-type rafting in Co-based superalloys [J]. Acta Mater., 2019, 175: 21
doi: 10.1016/j.actamat.2019.05.063
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|