Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1600-1610    DOI: 10.11900/0412.1961.2021.00106
  研究论文 本期目录 | 过刊浏览 |
基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响
彭俊1, 金鑫焱2,3(), 钟勇2,3, 王利2,3
1.宝山钢铁股份有限公司 冷轧厂 上海 200941
2.宝山钢铁股份有限公司 中央研究院 上海 201999
3.汽车用钢开发与应用技术国家重点实验室(宝钢) 上海 201999
Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet
PENG Jun1, JIN Xinyan2,3(), ZHONG Yong2,3, WANG Li2,3
1.Cold Rolling Plant, Baoshan Iron & Steel Co., Ltd., Shanghai 200941, China
2.Central Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201999, China
3.State Key Laboratory of Development and Application Technology of Automotive Steels, Baosteel, Shanghai 201999, China
引用本文:

彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
Jun PENG, Xinyan JIN, Yong ZHONG, Li WANG. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. Acta Metall Sin, 2022, 58(12): 1600-1610.

全文: PDF(3801 KB)   HTML
摘要: 

以16%Mn-0.7%C-1.5%Al (质量分数) TWIP钢为研究对象,采用热镀锌模拟实验研究了2种基板表层组织对TWIP钢可镀性的影响。使用180°折弯检测了镀层附着性,使用GD-OES分析了退火及镀锌试样表面的元素深度分布,使用SEM观察了试样表面和截面微观形貌。结果表明,通过预处理得到的TWIP钢表面一层铁素体晶粒可以有效改善TWIP钢的可镀性。当轧硬态的TWIP钢直接连续退火并热镀锌时,Mn元素形成了明显的外氧化,严重阻碍了镀液中的Al和基板反应形成Fe-Al抑制层,不仅漏镀明显,而且镀层附着性差。当使用经过预处理、表面有一层铁素体的TWIP钢进行热镀锌时,TWIP钢表面的细晶粒铁素体层有效抑制了退火过程中Mn元素外氧化,从而显著改善了锌液对带钢的润湿性,在镀层/基板界面位置形成了充分的Fe-Al抑制层。通过预处理得到的表面铁素体层可以有效解决16%Mn-0.7%C-1.5%Al TWIP钢的可镀性差和镀层附着性差问题。

关键词 TWIP钢可镀性选择性氧化表层铁素体晶粒    
Abstract

Twinning-induced plasticity (TWIP) steels with a high Mn content show an advanced combination of strength and formability among the commercially available advanced high-strength steels for automotive applications. However, applying zinc coatings on TWIP steels using the continuous hot-dip galvanizing process remains a great challenge owing to the selective oxidation of Mn that occurs during continuous annealing before hot dipping. In this study, a potential procedure for improving the galvanizability of TWIP steels is developed and its mechanism is discussed. Both as-received cold-rolled and pretreated 16%Mn-0.7%C-1.5%Al (mass fraction) TWIP steel sheets were galvanized using the hot-dip process in a laboratory, and the influence of the substrate surface structure on the galvanizability of the TWIP steel sheets was studied. The wettability of molten zinc on the TWIP steel sheets was examined, and the coating adhesion was tested by bending at 180°. The elemental depth profiles of both the annealed and galvanized panels were analyzed via glow discharge optical emission spectroscopy, and the surface and cross-sectional morphologies were observed via SEM. Results indicated that a thin layer of fine ferrite grains produced using the pretreatment process could effectively improve the galvanizability of the TWIP steel. When the as-received cold-rolled TWIP steel was galvanized using the hot-dip process, the dominant external oxidation of Mn was observed on the steel surface before hot dipping, which prevented the formation of an Fe-Al inhibition layer and further resulted in poor galvanizability and deteriorated coating adhesion. When a thin layer of fine ferrite grains covered the TWIP steel surface, the galvanizability was considerably improved even though the ferrite layer thickness was less than 1 μm. The presence of surface ferrite grains almost completely suppressed the external oxidation of Mn during the annealing process, resulting in a clean surface similar to that of an interstitial-free or bake-hardened steel. Therefore, the wettability of molten zinc on the TWIP steel sheet improved considerably and a sufficient Fe-Al inhibition layer was formed. The formation of a thin layer of surface ferrite grains on the 16%Mn-0.7%C-1.5%Al TWIP steel facilitates a novel technique for addressing problems associated with galvanizability and coating adhesion.

Key wordsTWIP steel    galvanizability    selective oxidation    surface ferrite grain
收稿日期: 2021-03-10     
ZTFLH:  TG156.2  
作者简介: 彭 俊,男,1973年生,高级工程师
SampleSurface structureSubstrate microstructureNote
AAusteniteAusteniteFull hard
BFerriteAustenitePretreated
表1  实验用样板信息
图1  试样B截面组织EBSD像
图2  模拟热镀锌试样上分析区域示意图
图3  热镀锌模拟实验热处理曲线
图4  斜镶截面金相制备及观察示意图
图5  热镀锌试样外观
图6  镀层附着性检测试样外观
图7  退火前后试样表面Fe、Mn、Al、O元素深度分布
图8  热镀锌试样表面Zn、Fe、Mn、Al元素深度分布
图9  退火试样表面SEM形貌及EDS分析结果
SpectrumOAlMnFeTotal
13.81.614.879.8100.0
22.41.44.192.1100.0
表2  图9中EDS半定量分析结果 (mass fraction / %)
图10  镀锌试样溶掉锌层后基板表面形貌SEM像
SpectrumAlMnFeZnTotal
115.97.873.72.7100.0
21.810.987.3100.0
33.29.587.3100.0
41.29.189.7100.0
57.63.387.12.0100.0
表3  图10中EDS半定量分析结果 (mass fraction / %)
图11  镀锌试样截面形貌
图12  镀锌试样A截面OM像
图13  试样B截面EDS结果
图14  试样B局部异常长大组织形貌
图15  基板表层组织对TWIP钢可镀性的影响示意图
1 Lesch C, Kwiaton N, Klose F B. Advanced high strength steels (AHSS) for automotive applications—Tailored properties by smart microstructural adjustments [J]. Steel Res. Int., 2017, 88: 1700210
2 Nanda T, Singh V, Singh V, et al. Third generation of advanced high-strength steels: Processing routes and properties [J]. Proc. Inst. Mech. Eng., 2019, 233L: 209
3 De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
4 De Cooman B C, Kwon O, Chin K G. State-of-the-knowledge on TWIP steel [J]. Mater. Sci. Technol., 2012, 28: 513
doi: 10.1179/1743284711Y.0000000095
5 Neu R W. Performance and characterization of TWIP steels for automotive applications [J]. Mater. Perform. Charact., 2013, 2: 244
6 Chen L Q, Zhao Y, Qin X M. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, A review [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 1
doi: 10.1007/s40195-012-0501-x
7 Gong Y F, Kim H S, Kim S K, et al. Selective oxidation and sub-surface phase transformation during austenitic annealing of TWIP steels [J]. Mater. Sci. Forum, 2010, 654-656: 258
doi: 10.4028/www.scientific.net/MSF.654-656.258
8 Gong Y F, De Cooman B C. Kirkendall void formation during selective oxidation [J]. Metall. Mater. Trans., 2010, 41A: 2180
9 Gong Y F, De Cooman B C. Selective oxidation and sub-surface phase transformation of TWIP steel during continuous annealing [J]. Steel Res. Int., 2011, 82: 1310
doi: 10.1002/srin.201100122
10 Cho L, De Cooman B C. Selective oxidation of TWIP steel during continuous annealing [J]. Steel Res. Int., 2012, 83: 391
doi: 10.1002/srin.201100296
11 Kim Y, Lee J, Shin K S, et al. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel [J]. Mater. Charact., 2014, 89: 138
doi: 10.1016/j.matchar.2014.01.012
12 Kim Y, Shin K S, Jeon S H, et al. The influence of the dew point on the wettability of twinning-induced-plasticity steels by liquid Zn-0.23-wt% Al [J]. Corros. Sci., 2014, 85: 364
doi: 10.1016/j.corsci.2014.04.034
13 Chen W. A study on interface condition in high Mn TWIP steel after initial stage of oxidation process [D]. Seoul: Graduate School Seoul National University, 2019
14 Arndt M, Duchoslav J, Preis K, et al. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing [J]. Anal. Bioanal. Chem., 2013, 405: 7119
doi: 10.1007/s00216-013-6801-9 pmid: 23404132
15 Jin X Y, Zhong Y, Wang L, et al. Effect of annealing temperature on the surface and subsurface microstructure of Al-added TWIP steel [J]. Surf. Coat. Technol., 2020, 386: 125479
16 Mahieu J, De Cooman B C, Claessens S. Galvanizability of high-strength steels for automotive applications [J]. Metall. Mater. Trans., 2001, 32A: 2905
17 Jacob R, Sankaranarayanan S R, Babu S P K. Recent advancements in manganese steels—A review [J]. Mater. Today, 2020, 27: 2852
18 Ren T D, Shi W, Liu R D, et al. Effect of dew point on hot-dip galvanizing behavior of a high-manganese TWIP steel for automotive application [J]. J. Iron Steel Res. Int., 2020, 27: 1200
doi: 10.1007/s42243-020-00455-4
19 Kim Y, Lee J, Shin K S, et al. Effect of nickel precoating on wettability of twinning-induced plasticity steels by liquid Zn-0.23 Wt Pct Al [J]. Metall. Mater. Trans., 2016, 47A: 4960
20 Blumenau M, Norden M, Friedel F, et al. Use of pre-oxidation to improve reactive wetting of high manganese alloyed steel during hot-dip galvanizing [J]. Surf. Coat. Technol., 2011, 206: 559
doi: 10.1016/j.surfcoat.2011.07.088
21 Blumenau M, Parma G, Norden M. Hot-dip galvanizing of high Mn alloyed TWIP steel-scale-up from laboratory investigation to industrial application [A]. Proceedings of 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Beijing, China: The Chinese Society for Metals, 2013: 143
22 Kavitha R, McDermid J R. On the in-situ aluminothermic reduction of manganese oxides in continuous galvanizing baths [J]. Surf. Coat. Technol., 2012, 212: 152
doi: 10.1016/j.surfcoat.2012.09.038
23 Blumenau M, Norden M, Schulz J, et al. Wetting and reactive wetting during hot-dip galvanizing of high Mn alloyed steel with Zn-Al-Mg baths [J]. Surf. Coat. Technol., 2012, 206: 4194
doi: 10.1016/j.surfcoat.2012.04.023
24 Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater. Sci., 2000, 45: 191
doi: 10.1016/S0079-6425(98)00006-1
25 Jin X Y, Chen J, Hu G, et al. Investigation on the coating adhesion of galvanized AHSS treated by oxidation-reduction process [J]. Iron Steel Technol., 2020, 17: 108
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[3] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[4] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[5] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[6] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[7] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[8] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[9] 孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.
[10] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[11] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.
[12] 彭晓, 王福会. 纳米晶金属材料的高温腐蚀行为*[J]. 金属学报, 2014, 50(2): 202-211.
[13] 张志波 刘振宇 张维娜. VC沉淀粒子对TWIP钢加工硬化行为的影响[J]. 金属学报, 2012, 48(9): 1067-1073.
[14] 黄宝旭 王长征 王晓东 戎咏华. N对TWIP钢马氏体相变及力学性能的影响[J]. 金属学报, 2012, 48(7): 769-774.
[15] 吴志强,唐正友,李华英,张海东. 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J]. 金属学报, 2012, 48(5): 593-600.