|
|
基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响 |
彭俊1, 金鑫焱2,3( ), 钟勇2,3, 王利2,3 |
1.宝山钢铁股份有限公司 冷轧厂 上海 200941 2.宝山钢铁股份有限公司 中央研究院 上海 201999 3.汽车用钢开发与应用技术国家重点实验室(宝钢) 上海 201999 |
|
Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet |
PENG Jun1, JIN Xinyan2,3( ), ZHONG Yong2,3, WANG Li2,3 |
1.Cold Rolling Plant, Baoshan Iron & Steel Co., Ltd., Shanghai 200941, China 2.Central Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201999, China 3.State Key Laboratory of Development and Application Technology of Automotive Steels, Baosteel, Shanghai 201999, China |
引用本文:
彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
Jun PENG,
Xinyan JIN,
Yong ZHONG,
Li WANG.
Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. Acta Metall Sin, 2022, 58(12): 1600-1610.
1 |
Lesch C, Kwiaton N, Klose F B. Advanced high strength steels (AHSS) for automotive applications—Tailored properties by smart microstructural adjustments [J]. Steel Res. Int., 2017, 88: 1700210
|
2 |
Nanda T, Singh V, Singh V, et al. Third generation of advanced high-strength steels: Processing routes and properties [J]. Proc. Inst. Mech. Eng., 2019, 233L: 209
|
3 |
De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
|
4 |
De Cooman B C, Kwon O, Chin K G. State-of-the-knowledge on TWIP steel [J]. Mater. Sci. Technol., 2012, 28: 513
doi: 10.1179/1743284711Y.0000000095
|
5 |
Neu R W. Performance and characterization of TWIP steels for automotive applications [J]. Mater. Perform. Charact., 2013, 2: 244
|
6 |
Chen L Q, Zhao Y, Qin X M. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, A review [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 1
doi: 10.1007/s40195-012-0501-x
|
7 |
Gong Y F, Kim H S, Kim S K, et al. Selective oxidation and sub-surface phase transformation during austenitic annealing of TWIP steels [J]. Mater. Sci. Forum, 2010, 654-656: 258
doi: 10.4028/www.scientific.net/MSF.654-656.258
|
8 |
Gong Y F, De Cooman B C. Kirkendall void formation during selective oxidation [J]. Metall. Mater. Trans., 2010, 41A: 2180
|
9 |
Gong Y F, De Cooman B C. Selective oxidation and sub-surface phase transformation of TWIP steel during continuous annealing [J]. Steel Res. Int., 2011, 82: 1310
doi: 10.1002/srin.201100122
|
10 |
Cho L, De Cooman B C. Selective oxidation of TWIP steel during continuous annealing [J]. Steel Res. Int., 2012, 83: 391
doi: 10.1002/srin.201100296
|
11 |
Kim Y, Lee J, Shin K S, et al. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel [J]. Mater. Charact., 2014, 89: 138
doi: 10.1016/j.matchar.2014.01.012
|
12 |
Kim Y, Shin K S, Jeon S H, et al. The influence of the dew point on the wettability of twinning-induced-plasticity steels by liquid Zn-0.23-wt% Al [J]. Corros. Sci., 2014, 85: 364
doi: 10.1016/j.corsci.2014.04.034
|
13 |
Chen W. A study on interface condition in high Mn TWIP steel after initial stage of oxidation process [D]. Seoul: Graduate School Seoul National University, 2019
|
14 |
Arndt M, Duchoslav J, Preis K, et al. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing [J]. Anal. Bioanal. Chem., 2013, 405: 7119
doi: 10.1007/s00216-013-6801-9
pmid: 23404132
|
15 |
Jin X Y, Zhong Y, Wang L, et al. Effect of annealing temperature on the surface and subsurface microstructure of Al-added TWIP steel [J]. Surf. Coat. Technol., 2020, 386: 125479
|
16 |
Mahieu J, De Cooman B C, Claessens S. Galvanizability of high-strength steels for automotive applications [J]. Metall. Mater. Trans., 2001, 32A: 2905
|
17 |
Jacob R, Sankaranarayanan S R, Babu S P K. Recent advancements in manganese steels—A review [J]. Mater. Today, 2020, 27: 2852
|
18 |
Ren T D, Shi W, Liu R D, et al. Effect of dew point on hot-dip galvanizing behavior of a high-manganese TWIP steel for automotive application [J]. J. Iron Steel Res. Int., 2020, 27: 1200
doi: 10.1007/s42243-020-00455-4
|
19 |
Kim Y, Lee J, Shin K S, et al. Effect of nickel precoating on wettability of twinning-induced plasticity steels by liquid Zn-0.23 Wt Pct Al [J]. Metall. Mater. Trans., 2016, 47A: 4960
|
20 |
Blumenau M, Norden M, Friedel F, et al. Use of pre-oxidation to improve reactive wetting of high manganese alloyed steel during hot-dip galvanizing [J]. Surf. Coat. Technol., 2011, 206: 559
doi: 10.1016/j.surfcoat.2011.07.088
|
21 |
Blumenau M, Parma G, Norden M. Hot-dip galvanizing of high Mn alloyed TWIP steel-scale-up from laboratory investigation to industrial application [A]. Proceedings of 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet [C]. Beijing, China: The Chinese Society for Metals, 2013: 143
|
22 |
Kavitha R, McDermid J R. On the in-situ aluminothermic reduction of manganese oxides in continuous galvanizing baths [J]. Surf. Coat. Technol., 2012, 212: 152
doi: 10.1016/j.surfcoat.2012.09.038
|
23 |
Blumenau M, Norden M, Schulz J, et al. Wetting and reactive wetting during hot-dip galvanizing of high Mn alloyed steel with Zn-Al-Mg baths [J]. Surf. Coat. Technol., 2012, 206: 4194
doi: 10.1016/j.surfcoat.2012.04.023
|
24 |
Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater. Sci., 2000, 45: 191
doi: 10.1016/S0079-6425(98)00006-1
|
25 |
Jin X Y, Chen J, Hu G, et al. Investigation on the coating adhesion of galvanized AHSS treated by oxidation-reduction process [J]. Iron Steel Technol., 2020, 17: 108
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|