|
|
基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制 |
王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远( ) |
天津大学 材料科学与工程学院 天津 300354 |
|
Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism |
WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan( ) |
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
Hanyu WANG,
Cai LI,
Can ZHAO,
Tao ZENG,
Zumin WANG,
Yuan HUANG.
Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. Acta Metall Sin, 2023, 59(5): 679-692.
1 |
Tsunematsu T, Nagami M. Status of the ITER project[J]. J. Plasma Fusion Res., 2002, 5: 137
|
2 |
Philipps V. Tungsten as material for plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2011, 415: S2
doi: 10.1016/j.jnucmat.2011.01.110
|
3 |
Hu J S, Zuo G Z, Wang L, et al. Brief review of the interactions between plasma and walls in magnetic controlled fusion devices[J]. J. Univ. Sci. Technol. China, 2020, 50: 1193
|
3 |
胡建生, 左桂忠, 王 亮 等. 磁约束核聚变装置等离子体与壁相互作用研究简述[J]. 中国科学技术大学学报, 2020, 50: 1193
|
4 |
Kaufmann M, Neu R. Tungsten as first wall material in fusion devices[J]. Fusion Eng. Des., 2007, 82: 521
doi: 10.1016/j.fusengdes.2007.03.045
|
5 |
Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces[J]. Mater. Trans., 2005, 46: 412
doi: 10.2320/matertrans.46.412
|
6 |
Bolt H, Barabash V, Krauss W, et al. Materials for the plasma-facing components of fusion reactors[J]. J. Nucl. Mater., 2004, 329-333: 66
doi: 10.1016/j.jnucmat.2004.04.005
|
7 |
Pintsuk G, Smid I, Döring J E, et al. Fabrication and characterization of vacuum plasma sprayed W/Cu-composites for extreme thermal conditions[J]. J. Mater. Sci., 2007, 42: 30
doi: 10.1007/s10853-006-1039-y
|
8 |
Mitteau R, Missiaen J M, Brustolin P, et al. Recent developments toward the use of tungsten as armour material in plasma facing components[J]. Fusion Eng. Des., 2007, 82: 1700
doi: 10.1016/j.fusengdes.2007.01.003
|
9 |
Batra I S, Kale G B, Saha T K, et al. Diffusion bonding of a Cu-Cr-Zr alloy to stainless steel and tungsten using nickel as an interlayer[J]. Mater. Sci. Eng., 2004, A369: 119
|
10 |
Wang C B, Shen Q, Zhou Z G, et al. Diffusion welding of 93W alloy to OFC and structural control of 93W/OFC joint[J]. J. Mater. Sci., 2005, 40: 2105
doi: 10.1007/s10853-005-1247-x
|
11 |
Tokitani M, Hamaji Y, Hiraoka Y, et al. Deformation and fracture behavior of the W/ODS-Cu joint fabricated by the advanced brazing technique[J]. Fusion Eng. Des., 2019, 146: 1733
doi: 10.1016/j.fusengdes.2019.03.027
|
12 |
Peng S X, Mao Y W, Min M, et al. Joining of tungsten to CuCrZr alloy with Cu-TiH2-Ni filler and Cu interlayer[J]. Int. J. Refract. Met. Hard Mater., 2019, 79: 31
doi: 10.1016/j.ijrmhm.2018.11.005
|
13 |
Bang E, Choi H, Kim H C, et al. Manufacturing and testing of flat type W/Cu/CuCrZr mock-ups by HIP process with PVD coating[J]. Fusion Eng. Des., 2019, 146: 603
doi: 10.1016/j.fusengdes.2019.01.034
|
14 |
Mou N Y, Han L, Yao D M, et al. Manufacturing and high heat flux testing of flat-type W/Cu/CuCrZr mock-up by HIP assisted brazing process[J]. Fusion Eng. Des., 2021, 169: 112670
doi: 10.1016/j.fusengdes.2021.112670
|
15 |
Niu Y R, Lu D, Huang L P, et al. Comparison of W-Cu composite coatings fabricated by atmospheric and vacuum plasma spray processes[J]. Vacuum, 2015, 117: 98
doi: 10.1016/j.vacuum.2015.04.015
|
16 |
Zhou Z J, Guo S Q, Song S X, et al. The development and prospect of fabrication of W based plasma facing component by atmospheric plasma spraying[J]. Fusion Eng. Des., 2011, 86: 1625
doi: 10.1016/j.fusengdes.2011.04.022
|
17 |
Song J P, Yu Y, Zhuang Z G, et al. Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components[J]. J. Nucl. Mater., 2013, 442: S208
doi: 10.1016/j.jnucmat.2013.01.326
|
18 |
Dai D, Wu M L, Shu S C, et al. Thermal CVD growth of graphene on copper particles targeting tungsten-copper composites with superior wear and arc ablation resistance properties[J]. Diam. Relat. Mater., 2020, 104: 107765
doi: 10.1016/j.diamond.2020.107765
|
19 |
Ibrahim A, Abdallah M, Mostafa S F, et al. An experimental investigation on the W-Cu composites[J]. Mater. Des., 2009, 30: 1398
doi: 10.1016/j.matdes.2008.06.068
|
20 |
Perez-Soriano E M, Arévalo C, Montealegre-Meléndez I, et al. Influence of starting powders on the final properties of W-Cu alloys manufactured through rapid sinter pressing technique[J]. Powder Metall., 2021, 64: 75
doi: 10.1080/00325899.2020.1847847
|
21 |
Saito S, Fukaya K, Ishiyama S, et al. Mechanical properties of HIP bonded W and Cu-alloys joint for plasma facing components[J]. J. Nucl. Mater., 2002, 307-311: 1542
doi: 10.1016/S0022-3115(02)01169-8
|
22 |
Zhang J, Huang Y, Wang Z M, et al. Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range[J]. J. Alloys Compd., 2019, 774: 939
doi: 10.1016/j.jallcom.2018.09.385
|
23 |
Zhang J, Huang Y, Liu Y C, et al. Direct diffusion bonding of immiscible tungsten and copper at temperature close to copper's melting point[J]. Mater. Des., 2018, 137: 473
doi: 10.1016/j.matdes.2017.10.052
|
24 |
Du J L, Li C, Wang Z M, et al. Direct alloying of immiscible molybdenum-silver system and its thermodynamic mechanism[J]. J. Mater. Sci. Technol., 2021, 65: 18
doi: 10.1016/j.jmst.2020.04.083
|
25 |
Pan X C, Zhang J, Huang Y, et al. Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method[J]. J. Alloys Compd., 2017, 723: 1053
doi: 10.1016/j.jallcom.2017.06.314
|
26 |
Zhang J, Huang Y, Wang Z M, et al. Preparation of a nanoporous active tungsten foil by two-step anodizing and deoxidized annealing for hydrogen evolution reaction[J]. Nanotechnology, 2019, 30: 015603
|
27 |
Li F, Chen Y Y, Chen X, et al. The improvement of bonding strength of W/Cu joints via nano-treatment of the W surface[J]. Metals, 2021, 11: 844
doi: 10.3390/met11050844
|
28 |
Zhao C, Li F, Chen Y Y, et al. Joining of oxygen-free high-conductivity Cu to CuCrZr by direct diffusion bonding without using an interlayer at low temperature[J]. Fusion Eng. Des., 2020, 151: 111400
doi: 10.1016/j.fusengdes.2019.111400
|
29 |
Huang Y, Du J L, Wang Z M. Progress in research on the alloying of binary immiscible metals[J]. Acta Metall. Sin., 2020, 56: 801
doi: 10.11900/0412.1961.2019.00451
|
29 |
黄 远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56: 801
|
30 |
Li Y G. Physical Chemistry[M]. Shanghai: Fudan University Press, 2013: 20
|
30 |
李元高. 物理化学[M]. 上海: 复旦大学出版社, 2013: 20
|
31 |
Pan C H. Development of surface analytical instruments abroad[J]. Anal. Instrum., 1980, (suppl.1) : 31
doi: 10.1081/CI-120018402
|
31 |
潘承璜. 国外表面分析仪器的进展[J]. 分析仪器, 1980, (): 31
|
32 |
Chen X Y, Zhang P F, Liu Y C, et al. Nanoconical active structures prepared by anodization and deoxidation of molybdenum foil and their activity origin[J]. J. Alloys Compd., 2021, 851: 156896
doi: 10.1016/j.jallcom.2020.156896
|
33 |
Fan X. X-Ray Metallography[M]. Beijing: China Machine Press, 1981: 16; 23
|
33 |
范 雄. X射线金属学[M]. 北京: 机械工业出版社, 1981: 16; 23
|
34 |
Mai Z H. X-Ray Characterization of Thin Film Structure[M]. 2nd Ed., Beijing: Science Press, 2015: 20
|
34 |
麦振洪. 薄膜结构X射线表征[M]. 第2版. 北京: 科学出版社, 2015: 20
|
35 |
Han L, Jeurgens L P H, Cancellieri C, et al. Anomalous texture development induced by grain yielding anisotropy in Ni and Ni-Mo alloys[J]. Acta Mater., 2020, 200: 857
doi: 10.1016/j.actamat.2020.09.063
|
36 |
Zeng T, Li F, Huang Y. Construction of an n-body potential for revealing the atomic mechanism for direct alloying of immiscible tungsten and copper[J]. Materials, 2021, 14: 5988
doi: 10.3390/ma14205988
|
37 |
Gan X L, Xiao S F, Deng H Q, et al. Atomistic simulations of the Fe(001)-Li solid-liquid interface[J]. Fusion Eng. Des., 2014, 89: 2894
doi: 10.1016/j.fusengdes.2014.06.018
|
38 |
Yang Y, Olmsted D L, Asta M, et al. Atomistic characterization of the chemically heterogeneous Al-Pb solid-liquid interface[J]. Acta Mater., 2012, 60: 4960
doi: 10.1016/j.actamat.2012.05.016
|
39 |
Xu C, Meng X C, Sun X G, et al. Atomic scale analysis of the corrosion characteristics of Cu-Li solid-liquid interfaces[J]. J. Alloys Compd., 2018, 763: 1
doi: 10.1016/j.jallcom.2018.05.320
|
40 |
Luo M Z, Liang L, Lang L, et al. Molecular dynamics simulations of the characteristics of Mo/Ti interfaces[J]. Comput. Mater. Sci., 2018, 141: 293
doi: 10.1016/j.commatsci.2017.09.039
|
41 |
Laursen A B, Kegnæs S, Dahl S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy Environ. Sci., 2012, 5: 5577
doi: 10.1039/c2ee02618j
|
42 |
Liu B X, Lai W S, Zhang Z J. Solid-state crystal-to-amorphous transition in metal-metal multilayers and its thermodynamic and atomistic modelling[J]. Adv. Phys., 2001, 50: 367
doi: 10.1080/00018730110096112
|
43 |
Du J L, Huang Y, Xiao C, et al. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA)[J]. J. Mater. Sci. Technol., 2018, 34: 689
doi: 10.1016/j.jmst.2017.10.009
|
44 |
Du J L, Huang Y, Liu J W, et al. Irradiation damage alloying for immiscible alloy systems and its thermodynamic origin[J]. Mater. Des., 2019, 170: 107699
doi: 10.1016/j.matdes.2019.107699
|
45 |
Sun M H, Wei J K, Xu Z, et al. Electrochemical solid-state amorphization in the immiscible Cu-Li system[J]. Sci. Bull., 2018, 63: 1208
doi: 10.1016/j.scib.2018.06.021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|