Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 679-692    DOI: 10.11900/0412.1961.2022.00003
  本期目录 | 过刊浏览 |
基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制
王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远()
天津大学 材料科学与工程学院 天津 300354
Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism
WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan()
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
引用本文:

王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
Hanyu WANG, Cai LI, Can ZHAO, Tao ZENG, Zumin WANG, Yuan HUANG. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. Acta Metall Sin, 2023, 59(5): 679-692.

全文: PDF(2933 KB)   HTML
摘要: 

利用纳米多孔活性结构诱导和促进W和Cu直接合金化,主要包括3步骤:首先,通过两步阳极氧化和还原退火在W表面制备纳米多孔结构;然后,在纳米多孔W上电沉积Cu层;最后,在近Cu熔点温度(980℃)下退火,得到W/Cu层状复合材料/连接件。W/Cu界面的表征结果表明,2种金属间的扩散距离约为27 nm,W和Cu之间成功实现直接合金化。同时,针对此前建立的不互溶金属直接合金化热力学模型存在的问题,改进了表面能和压力能的计算方法,解决了表面原子层数选用导致表面能结果具有随意性的问题和热力学计算中的单位尺度问题,实现了基于纳米活性结构的不互溶W-Cu直接合金化的热力学计算。热力学计算结果表明,W表面纳米多孔化之后W-Cu体系的表面能大幅提升,可以作为W和Cu直接合金化的热力学驱动力。分析认为,除具有高表面能的晶面增多之外,纳米结构形状也是W表面纳米化后表面能提高的主要原因之一。

关键词 不互溶W-Cu体系纳米多孔结构直接合金化热力学模型表面能    
Abstract

W is usually used as plasma-facing components in nuclear fusion reactors because of its high melting point, low sputtering yield, high-temperature strength, and low tritium retention properties. On the other hand, Cu and its alloys show excellent thermal conductivity making them ideal as a heat sink material in reactors. Therefore, W-Cu layered composites have important applications in nuclear fusion reactors. Due to the immiscibility between W and Cu, direct alloying between them without using interlayer metals is critical for the preparation of such layered composites. In this study, a nanoporous active structure was used to induce and promote the direct alloying of the W-Cu system. Direct alloying consists of three steps. First, a nanoporous active layer is prepared on the surface of a W foil via two-step anodizing and deoxidized annealing in a hydrogen atmosphere. Second, a Cu coating layer is deposited on the nanoporous W by electroplating. Finally, the obtained W-Cu electrodeposited sample is annealed at temperatures close to the melting point of Cu (i.e., 980oC). The established thermodynamic model for the direct alloying of immiscible metal systems is used for the direct alloying of W and Cu based on a nanoporous active structure. There are two problems with this model. First, the surface energy results are arbitrary due to the selection of the number of surface atomic layers. Second, the unit scale in thermodynamic calculations. To solve these problems, the calculation methods for surface energy and pressure energy are improved in this work, which makes the thermodynamic calculation for the direct alloying of W-Cu based on a nanoporous active structure feasible. The results show that a nanoporous active structure is formed on the surface of W after nanotreatment. The characterization results of the W/Cu interface show that the diffusion distance between the two metals is about 27 nm and the direct alloying between W and Cu is successful. The average shear strength of the W-Cu layered composites was 101 MPa. This is a 16% increase compared with W-Cu layered composites without a nanoporous structure. The thermodynamic calculation results show that the surface energy of the W-Cu system is greatly improved due to the nanoporous active structure prepared on the W surface. The surface energy can be used as the main thermodynamic driving force for the direct alloying of W-Cu systems. There are different reasons why nanotreatment increases W surface energy. One reason is the increase of crystal planes with high surface energy via nanotreatment of the W surface, and another is the shape of the nanoporous structure.

Key wordsimmiscible W-Cu system    nanoporous structure    direct alloying    thermodynamic model    surface energy
收稿日期: 2022-01-04     
ZTFLH:  TG146.4  
基金资助:国家重点研发计划项目(2018YFB0703904);国家重点研发计划项目(2017YFE0302600)
作者简介: 王寒玉,女,1997年生,硕士生
图1  经过两步阳极氧化和H2退火还原W板的表面和截面形貌SEM像
图2  表面纳米多孔化前后W板的线性伏安曲线
图3  W/Cu界面高角环形暗场(HAADF)像及元素分布图
图4  W/Cu界面HRTEM像
图5  基于纳米活性结构制备的W/Cu层状复合材料的剪切强度测试应力-应变曲线
图6  W/Cu层状复合材料的剪切断口形貌(W侧)的SEM像以及EDS分析结果
图7  W/Cu层状复合材料剪切断口形貌(Cu侧)的SEM像以及EDS结果
图8  纳米多孔化前后W板表面以及Cu电沉积层的XRD谱
MetalEsurf (110)Esurf (111)Esurf (200)Esurf (211)Esurf (220)
W48.16-85.4192.47100.33
Cu-48.1618.70-13.24
表1  基于第一性原理和新表面能公式计算的W和Cu表面所含各晶面的表面能(Esurf) (kJ·mol-1)
ElementV2/3nws-1/3φγEKGSfγS,0ρMTm
cm2(d.u.)1/3VGPaGPaGPa105 m2mJ·m-2g·cm-3g·mol-1K
Cu3.701.474.450.343129.8137.848.31.6718258.9663.551356
W4.501.814.800.280411.0160.6311.02.03367519.32183.843680
表2  W-Cu合金化热力学计算所用的参数[25,42]
图9  基于纳米活性结构的W-Cu直接合金化过程中的能量变化曲线
图10  W纳米多孔结构及W平板的简化模型
图11  分子动力学模拟所获W和Cu在不同温度下直接合金化时W/Cu界面及其附近的精细密度分布函数
1 Tsunematsu T, Nagami M. Status of the ITER project[J]. J. Plasma Fusion Res., 2002, 5: 137
2 Philipps V. Tungsten as material for plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2011, 415: S2
doi: 10.1016/j.jnucmat.2011.01.110
3 Hu J S, Zuo G Z, Wang L, et al. Brief review of the interactions between plasma and walls in magnetic controlled fusion devices[J]. J. Univ. Sci. Technol. China, 2020, 50: 1193
3 胡建生, 左桂忠, 王 亮 等. 磁约束核聚变装置等离子体与壁相互作用研究简述[J]. 中国科学技术大学学报, 2020, 50: 1193
4 Kaufmann M, Neu R. Tungsten as first wall material in fusion devices[J]. Fusion Eng. Des., 2007, 82: 521
doi: 10.1016/j.fusengdes.2007.03.045
5 Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces[J]. Mater. Trans., 2005, 46: 412
doi: 10.2320/matertrans.46.412
6 Bolt H, Barabash V, Krauss W, et al. Materials for the plasma-facing components of fusion reactors[J]. J. Nucl. Mater., 2004, 329-333: 66
doi: 10.1016/j.jnucmat.2004.04.005
7 Pintsuk G, Smid I, Döring J E, et al. Fabrication and characterization of vacuum plasma sprayed W/Cu-composites for extreme thermal conditions[J]. J. Mater. Sci., 2007, 42: 30
doi: 10.1007/s10853-006-1039-y
8 Mitteau R, Missiaen J M, Brustolin P, et al. Recent developments toward the use of tungsten as armour material in plasma facing components[J]. Fusion Eng. Des., 2007, 82: 1700
doi: 10.1016/j.fusengdes.2007.01.003
9 Batra I S, Kale G B, Saha T K, et al. Diffusion bonding of a Cu-Cr-Zr alloy to stainless steel and tungsten using nickel as an interlayer[J]. Mater. Sci. Eng., 2004, A369: 119
10 Wang C B, Shen Q, Zhou Z G, et al. Diffusion welding of 93W alloy to OFC and structural control of 93W/OFC joint[J]. J. Mater. Sci., 2005, 40: 2105
doi: 10.1007/s10853-005-1247-x
11 Tokitani M, Hamaji Y, Hiraoka Y, et al. Deformation and fracture behavior of the W/ODS-Cu joint fabricated by the advanced brazing technique[J]. Fusion Eng. Des., 2019, 146: 1733
doi: 10.1016/j.fusengdes.2019.03.027
12 Peng S X, Mao Y W, Min M, et al. Joining of tungsten to CuCrZr alloy with Cu-TiH2-Ni filler and Cu interlayer[J]. Int. J. Refract. Met. Hard Mater., 2019, 79: 31
doi: 10.1016/j.ijrmhm.2018.11.005
13 Bang E, Choi H, Kim H C, et al. Manufacturing and testing of flat type W/Cu/CuCrZr mock-ups by HIP process with PVD coating[J]. Fusion Eng. Des., 2019, 146: 603
doi: 10.1016/j.fusengdes.2019.01.034
14 Mou N Y, Han L, Yao D M, et al. Manufacturing and high heat flux testing of flat-type W/Cu/CuCrZr mock-up by HIP assisted brazing process[J]. Fusion Eng. Des., 2021, 169: 112670
doi: 10.1016/j.fusengdes.2021.112670
15 Niu Y R, Lu D, Huang L P, et al. Comparison of W-Cu composite coatings fabricated by atmospheric and vacuum plasma spray processes[J]. Vacuum, 2015, 117: 98
doi: 10.1016/j.vacuum.2015.04.015
16 Zhou Z J, Guo S Q, Song S X, et al. The development and prospect of fabrication of W based plasma facing component by atmospheric plasma spraying[J]. Fusion Eng. Des., 2011, 86: 1625
doi: 10.1016/j.fusengdes.2011.04.022
17 Song J P, Yu Y, Zhuang Z G, et al. Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components[J]. J. Nucl. Mater., 2013, 442: S208
doi: 10.1016/j.jnucmat.2013.01.326
18 Dai D, Wu M L, Shu S C, et al. Thermal CVD growth of graphene on copper particles targeting tungsten-copper composites with superior wear and arc ablation resistance properties[J]. Diam. Relat. Mater., 2020, 104: 107765
doi: 10.1016/j.diamond.2020.107765
19 Ibrahim A, Abdallah M, Mostafa S F, et al. An experimental investigation on the W-Cu composites[J]. Mater. Des., 2009, 30: 1398
doi: 10.1016/j.matdes.2008.06.068
20 Perez-Soriano E M, Arévalo C, Montealegre-Meléndez I, et al. Influence of starting powders on the final properties of W-Cu alloys manufactured through rapid sinter pressing technique[J]. Powder Metall., 2021, 64: 75
doi: 10.1080/00325899.2020.1847847
21 Saito S, Fukaya K, Ishiyama S, et al. Mechanical properties of HIP bonded W and Cu-alloys joint for plasma facing components[J]. J. Nucl. Mater., 2002, 307-311: 1542
doi: 10.1016/S0022-3115(02)01169-8
22 Zhang J, Huang Y, Wang Z M, et al. Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range[J]. J. Alloys Compd., 2019, 774: 939
doi: 10.1016/j.jallcom.2018.09.385
23 Zhang J, Huang Y, Liu Y C, et al. Direct diffusion bonding of immiscible tungsten and copper at temperature close to copper's melting point[J]. Mater. Des., 2018, 137: 473
doi: 10.1016/j.matdes.2017.10.052
24 Du J L, Li C, Wang Z M, et al. Direct alloying of immiscible molybdenum-silver system and its thermodynamic mechanism[J]. J. Mater. Sci. Technol., 2021, 65: 18
doi: 10.1016/j.jmst.2020.04.083
25 Pan X C, Zhang J, Huang Y, et al. Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method[J]. J. Alloys Compd., 2017, 723: 1053
doi: 10.1016/j.jallcom.2017.06.314
26 Zhang J, Huang Y, Wang Z M, et al. Preparation of a nanoporous active tungsten foil by two-step anodizing and deoxidized annealing for hydrogen evolution reaction[J]. Nanotechnology, 2019, 30: 015603
27 Li F, Chen Y Y, Chen X, et al. The improvement of bonding strength of W/Cu joints via nano-treatment of the W surface[J]. Metals, 2021, 11: 844
doi: 10.3390/met11050844
28 Zhao C, Li F, Chen Y Y, et al. Joining of oxygen-free high-conductivity Cu to CuCrZr by direct diffusion bonding without using an interlayer at low temperature[J]. Fusion Eng. Des., 2020, 151: 111400
doi: 10.1016/j.fusengdes.2019.111400
29 Huang Y, Du J L, Wang Z M. Progress in research on the alloying of binary immiscible metals[J]. Acta Metall. Sin., 2020, 56: 801
doi: 10.11900/0412.1961.2019.00451
29 黄 远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56: 801
30 Li Y G. Physical Chemistry[M]. Shanghai: Fudan University Press, 2013: 20
30 李元高. 物理化学[M]. 上海: 复旦大学出版社, 2013: 20
31 Pan C H. Development of surface analytical instruments abroad[J]. Anal. Instrum., 1980, (suppl.1) : 31
doi: 10.1081/CI-120018402
31 潘承璜. 国外表面分析仪器的进展[J]. 分析仪器, 1980, (): 31
32 Chen X Y, Zhang P F, Liu Y C, et al. Nanoconical active structures prepared by anodization and deoxidation of molybdenum foil and their activity origin[J]. J. Alloys Compd., 2021, 851: 156896
doi: 10.1016/j.jallcom.2020.156896
33 Fan X. X-Ray Metallography[M]. Beijing: China Machine Press, 1981: 16; 23
33 范 雄. X射线金属学[M]. 北京: 机械工业出版社, 1981: 16; 23
34 Mai Z H. X-Ray Characterization of Thin Film Structure[M]. 2nd Ed., Beijing: Science Press, 2015: 20
34 麦振洪. 薄膜结构X射线表征[M]. 第2版. 北京: 科学出版社, 2015: 20
35 Han L, Jeurgens L P H, Cancellieri C, et al. Anomalous texture development induced by grain yielding anisotropy in Ni and Ni-Mo alloys[J]. Acta Mater., 2020, 200: 857
doi: 10.1016/j.actamat.2020.09.063
36 Zeng T, Li F, Huang Y. Construction of an n-body potential for revealing the atomic mechanism for direct alloying of immiscible tungsten and copper[J]. Materials, 2021, 14: 5988
doi: 10.3390/ma14205988
37 Gan X L, Xiao S F, Deng H Q, et al. Atomistic simulations of the Fe(001)-Li solid-liquid interface[J]. Fusion Eng. Des., 2014, 89: 2894
doi: 10.1016/j.fusengdes.2014.06.018
38 Yang Y, Olmsted D L, Asta M, et al. Atomistic characterization of the chemically heterogeneous Al-Pb solid-liquid interface[J]. Acta Mater., 2012, 60: 4960
doi: 10.1016/j.actamat.2012.05.016
39 Xu C, Meng X C, Sun X G, et al. Atomic scale analysis of the corrosion characteristics of Cu-Li solid-liquid interfaces[J]. J. Alloys Compd., 2018, 763: 1
doi: 10.1016/j.jallcom.2018.05.320
40 Luo M Z, Liang L, Lang L, et al. Molecular dynamics simulations of the characteristics of Mo/Ti interfaces[J]. Comput. Mater. Sci., 2018, 141: 293
doi: 10.1016/j.commatsci.2017.09.039
41 Laursen A B, Kegnæs S, Dahl S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy Environ. Sci., 2012, 5: 5577
doi: 10.1039/c2ee02618j
42 Liu B X, Lai W S, Zhang Z J. Solid-state crystal-to-amorphous transition in metal-metal multilayers and its thermodynamic and atomistic modelling[J]. Adv. Phys., 2001, 50: 367
doi: 10.1080/00018730110096112
43 Du J L, Huang Y, Xiao C, et al. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA)[J]. J. Mater. Sci. Technol., 2018, 34: 689
doi: 10.1016/j.jmst.2017.10.009
44 Du J L, Huang Y, Liu J W, et al. Irradiation damage alloying for immiscible alloy systems and its thermodynamic origin[J]. Mater. Des., 2019, 170: 107699
doi: 10.1016/j.matdes.2019.107699
45 Sun M H, Wei J K, Xu Z, et al. Electrochemical solid-state amorphization in the immiscible Cu-Li system[J]. Sci. Bull., 2018, 63: 1208
doi: 10.1016/j.scib.2018.06.021
[1] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 王斌,刘振宇,周晓光,王国栋. 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J]. 金属学报, 2013, 49(1): 26-34.
[4] 蒋光锐; 刘源; 李言祥 . 铝合金熔体中氢溶解度的计算模型[J]. 金属学报, 2008, 44(2): 129-133 .
[5] 张怀征; 刘利民; 王绍青 . IVB和VB过渡族金属碳化物及其表面的结构和电子态的第一原理研究[J]. 金属学报, 2006, 42(5): 554-560 .
[6] 王晓春; 贾瑜; 姚乾凯; 王飞; 马健新; 胡行 . 金属高Miller指数表面能的分子动力学研究[J]. 金属学报, 2004, 40(6): 589-.
[7] 陈福义; 介万奇 . Al-Cu-Zn合金溶质分凝的热力学模型[J]. 金属学报, 2003, 39(6): 597-600 .
[8] 陈福义; 介万奇 . 利用短程序改进Al-Cu熔体的热力学模型[J]. 金属学报, 2003, 39(6): 601-604 .
[9] 乐启炽; 张新建; 崔建忠; 路贵民 . 金属合金溶液热力学模型研究进展[J]. 金属学报, 2003, 39(1): 35-42 .
[10] 沈剑韵;郝耀武;周传华;凌铃. 不对称性定量化的三元系热力学模型[J]. 金属学报, 1996, 32(9): 943-948.
[11] 沙宪伟;张修睦;陈魁英;李依依. NiAl表面能的分子动力学计算[J]. 金属学报, 1996, 32(11): 1184-1188.