金属学报, 2023, 59(8): 986-1000 DOI: 10.11900/0412.1961.2023.00078

综述

聚变堆用W在等离子体作用下的辐照损伤行为研究进展

刘伟,1, 陈婉琦2, 马梦晗1, 李恺伦3

1清华大学 材料学院 北京 100084

2中国核电工程有限公司 北京 100840

3中国科学院工程热物理研究所 北京 100190

Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion

LIU Wei,1, CHEN Wanqi2, MA Menghan1, LI Kailun3

1School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

2CNNC China Nuclear Power Engineering Co., Ltd., Beijing 100840, China

3Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China

通讯作者: 刘 伟,liuw@mail.tsinghua.edu.cn,主要从事核材料和增材制造的研究

责任编辑: 毕淑娟

收稿日期: 2023-02-27   修回日期: 2023-05-02  

基金资助: 国家自然科学基金项目(12105314)

Corresponding authors: LIU Wei, professor, Tel: 13910677301, E-mail:liuw@mail.tsinghua.edu.cn

Received: 2023-02-27   Revised: 2023-05-02  

Fund supported: National Natural Science Foundation of China(12105314)

作者简介 About authors

刘 伟,男,1965年生,教授,博士

摘要

核聚变反应堆中,W因为其高熔点、高导热性、低溅射率和低氚(T)滞留等优势,成为面向等离子体材料中最有应用前景的候选材料。在服役过程中,W会受到低能高束流等离子体的辐照作用,导致材料表面产生微纳尺度的损伤结构,如表面起泡和表面纳米组织等,引起导热性能和力学性能下降,从而严重影响其再服役性能。本文聚焦于国内外关于氢/氘(H/D)等离子体作用下W的辐照损伤行为的研究现状,总结了气泡的形核和长大机制,以及辐照缺陷对导热、力学和再服役性能的影响机制,为W组织结构优化、性能预测和服役寿命评价提供理论基础。

关键词: 核聚变; W; 等离子体; 辐照损伤; 服役性能

Abstract

Tungsten is the most promising candidate as plasma facing material in nuclear fusion reactors because of its high melting point, high thermal conductivity, low sputtering rate, and low tritium retention. However, when exposed to low-energy high flux plasma, tungsten undergoes micro/nanoscale damage, such as surface blistering and surface nanostructure, on its surface. These damage structures can degrade thermal and mechanical properties, thereby adversely affecting the reservice performance of tungsten. In this paper, the current research status of the damage behavior of tungsten when exposed to H/D plasma was focused. The research progress of the mechanisms of surface blistering nucleation and growth, as well as the effects of irradiation defects on thermal conductivity, mechanics, and service performance was summarized. These data can provide a theoretical basis for optimizing the microstructure of tungsten materials, thus improving its service performance and extending its service life.

Keywords: nuclear fusion; tungsten; plasma; irradiation damage; service performance

PDF (5279KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000 DOI:10.11900/0412.1961.2023.00078

LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. Acta Metallurgica Sinica, 2023, 59(8): 986-1000 DOI:10.11900/0412.1961.2023.00078

21世纪,人类面临的能源危机问题日益严重,不可再生的传统化石能源日渐枯竭,人类对新能源的需求更加迫切。可控热核聚变能被认为是最有可能永久解决能源问题的新型能源,具有无限、安全和无放射性核废料的优点。热核聚变反应的原理是将受到一定约束条件的氘(D)和氚(T)加热到极高的温度,使其在等离子状态下发生反应,释放能量。最容易实现的核反应是2D + 3T → 4He (3.5 MeV) + n (中子,14.1 MeV),其中反应物2D可以从海水中源源不断地提取,3T可以由中子轰击Li靶材反应生成,而生成物4He同样清洁无环境污染[1~3]

国际热核聚变实验堆(international thermonuclear experimental reactor,ITER)计划是目前规模最大的国际性合作科研项目之一,由欧盟、美国、俄罗斯、印度、日本、韩国和中国共同参与,目标是建成能稳态运行的全超导磁约束托卡马克实验堆[4,5]。托卡马克装置主体是一个环绕线圈的环形真空室,产生的强磁场虽能约束大部分高温等离子体,但仍有很多等离子体会不可避免地轰击真空室内壁和偏滤器,造成壁材料服役性能严重下降,甚至影响材料的使用寿命和装置的安全性[4~7],这种服役时直接面对等离子体辐照作用的材料即为面对等离子体材料(plasma facing materials,PFMs),位于真空腔室底部的偏滤器作为面对等离子体部件(plasma facing component,PFC),其主要作用是排出D/T等离子体反应生成的氦灰以及杂质。

偏滤器服役时会承受低能(< 100 eV)高束流(1022~1025 m-2·s-1) D/T等离子体、高通量(8 × 1018 m-2·s-1)高能(14 MeV)中子流的辐照作用,高能流密度的热负荷作用和非稳态运行的瞬态事件[8~10]。在如此复杂的服役环境下,偏滤器结构材料的稳定性对于整个托卡马克装置正常运行至关重要。

W具有高熔点、导热性好、低溅射产额和低T滞留等优势,无论是ITER计划还是中国聚变工程试验(China fusion engineering test reactor,CFETR),均把W作为偏滤器的候选材料[11]。然而W在服役时会受到等离子体辐照作用,导致材料表面产生微纳尺度损伤结构,如表面起泡、绒毛结构、孔洞和表面纳米组织等,从而引起热导率下降、表面硬化和脆化,使材料更易发生表面破裂和剥离,影响其再服役性能,进而对核聚变装置的安全性造成危害。

本文聚焦于W在H/D等离子体作用下的辐照损伤行为,系统总结了国内外科研人员对W的表面起泡行为和服役性能方面的研究现状,旨在为优化W组织结构和性能,提高托卡马克装置运行的安全稳定性,延长使用寿命提供参考。

1 等离子体作用下W的微纳尺度损伤行为

作为PFMs,W在服役过程中将受到从芯部等离子体逃逸出来的D/T等离子体及其反应产物He和中子的辐照作用,其中D/T等离子体在等离子体中占绝大部分,约90%左右。由于T具有放射性,因此国际上通常采用H/D等离子体进行辐照研究。等离子体辐照会使W表面产生辐照损伤结构,如表面气泡、绒毛结构和表面纳米组织等,尺寸通常在微米和纳米量级。

表面起泡是H/D等离子体辐照造成的最主要损伤行为[12~15],本节先从宏观的表面起泡现象及其影响因素入手,再由宏观尺度到微纳尺度,依次总结表面气泡的长大机制和形核机理,综述了等离子体作用下W损伤缺陷演化的研究进展。

1.1 表面起泡现象及影响因素

表面起泡现象是指W在受到等离子体辐照后表面出现的表面凸起现象,如图1[16]所示。不同晶粒取向的W表面上均出现表面起泡现象,根据截面形貌可知,表面凸起对应其下方近表层内的气泡。

图1

图1   D等离子体辐照在表面取向为[111]、[110]和[001]的W晶粒上引起的表面起泡现象[16]

Fig.1   Surface (a, c, e) and crosss-ection (b, d, f) morphologies of surface blistering of D plasma exposed W with surface normal directions close to [111] (a, b), [110] (c, d), and [001] (e, f) directions, respectively[16] (Red arrows in Fig.1d show two blisters caused by the gas pressure inside the cavities beneath the surface; A blue arrow in Fig.1d shows a large cavity along the grain boundary; Blue arrows in Fig.1f show that there were also cavities beneath the surface, but these cavities did not induce any obvious blisters on the surface at all)


研究[17~19]表明,等离子体辐照作用下W表面起泡行为与辐照剂量和辐照温度有关。随着辐照剂量的增加,W表面上尺寸较小的气泡会聚集融合成尺寸较大的气泡,表面气泡的平均尺寸将会增大,而气泡数量则会减少。Ye等[20]发现在低能H等离子体辐照作用下的W表面上,随着辐照剂量的增加,气泡的尺寸从几十微米增至几百微米。Jia等[21]利用高束流强度D等离子体在943 K下对W进行辐照并观察到表面起泡,发现随着辐照剂量(次数)的增加,表面起泡行为越来越严重,如图2a~c[21]所示。根据图2d[21]中对气泡密度和尺寸进行统计的结果可知,气泡密度随辐照剂量增加而增加,直至辐照次数超出4次后接近饱和,该变化规律与D滞留量随着辐照剂量增加而增加的变化规律一致。辐照温度对表面起泡行为也具有显著的影响。Luo等[22]发现,随着辐照温度升高,表面气泡密度存在先上升后下降的趋势,当温度升高到900 K左右时,不再出现表面起泡现象。辐照温度主要通过影响D和空位复合体(D-V complex)的形成、扩散和聚集,进而影响表面气泡的形成[20,23]。表面气泡随着温度升高而逐渐减少至消失,一个原因是D原子的滞留量降低,另一个原因是高温时D原子的扩散能力更强,使得D原子不易在W的近表面形成富集,使得表面气泡减少。

图2

图2   D等离子体(943 K)分别在1.55 × 1026、4.21 × 1026和7.05 × 1026 m-2辐照条件下W样品表面形貌及表面气泡尺寸和密度分布统计[21]

Fig.2   Surface morphologies of W samples exposed to D plasma (943 K) at irradiation doses of 1.55 × 1026 m-2 (a), 4.21 × 1026 m-2 (b), and 7.05 × 1026 m-2 (c); and surface bubble size and density distribution statistics (d)[21]


除了辐照剂量和辐照温度,表面起泡行为还与材料表面的晶粒取向有关。Shu等[24]研究发现,表面气泡容易出现在表面法向接近[111]表面的晶粒上,而在其他表面上气泡数量较少,但是对于表面气泡取向依赖性的成因并没有给出解释。Lindig等[17]发现,出现在{110}面晶粒上的气泡沿<111>方向拉长,推测与W的低指数滑移系{110}<111>有关。Miyamoto等[25]也发现了类似的现象,认为这是由于法向[111]的表面为最疏排表面,因此D粒子更容易注入该表面,造成D粒子的注入量和注入深度更大,该解释是基于之前高能粒子辐照实验的结果。然而,低能量(50 eV以下) D等离子体的注入深度很浅,晶体取向对于D粒子的注入量以及注入深度的影响应该很小,所以他们对于低能D粒子造成的表面气泡取向依赖性的解释存在很大疑问。贾玉振[26]研究发现,[110]表面上六边形气泡的边缘和台阶均垂直于[110]方向,在表面法向接近[111]的表面上,如图3[16]所示。金属W的晶格结构为bcc结构,当发生塑性变形时,位错滑移的滑移方向为[111]方向,而通常的滑移面为{110}面。因此,贾玉振[26]基于W的塑性变形理论提出了表面起泡模型,如图4[16]所示,即由于W中位错的滑移方向为[111]方向,所以当辐照表面垂直于[111]方向时,表面的氘泡中存在的较大气体压强导致气泡发生表面变形,从而形成表面气泡。当辐照表面的法向远离[111]方向时,氘泡中的气体压强不易使气泡表面产生变形,故气泡数量较少。基于W塑性变形理论的表面起泡机制可以很好地解释D等离子体导致的表面气泡取向依赖性。

图3

图3   不同晶粒取向[111]表面上的表面气泡形貌(具体晶粒取向已用[110]方向标出)[16]

Fig.3   Surface blistering morphologies of surface bubbles on [111] planeswith different grain orientations (a-c)[16] (The specific grain orientations are marked in the [110] direction)


图4

图4   基于塑性变形机制的表面起泡模型[16]

Fig.4   Surface blistering model based on plastic deformation mechanism[16]


表面纳米泡也属于等离子体辐照后W表面起泡现象,并且同样具有取向依赖性。徐海燕[27]在低能高束流 D 辐照W表面观察到了形成的纳米泡,如图5[27]所示。按照组织的形貌,纳米泡包括三角形组织、条带状组织和海绵组织。纳米泡在近{111}取向晶粒内为三角形,在近{001}取向晶粒内为海绵状,其余取向为条带状,具有显著的取向依赖性。

图5

图5   D等离子体辐照后W的表面气泡和纳米泡(38 eV、1024 m-2·s-1、423 K、7 × 1026 m-2)[27]

Fig.5   Surface bubbles and nanobubbles of W after D plasma irradiation (38 eV, 1024 m-2·s-1, 423 K, 7 × 1026 m-2)[27] (a, b) surface bubbles viewed vertically (a) and tilted at 45° (b) (c, d) nanobubbles in SEM conventional mode (c) and Inlens mode (d) (Arrows in Fig.5d show the morphologies of broken nanobubbles)


由此可见,在等离子体作用下W的表面起泡具有明显的取向依赖性。对于较大的微米气泡,基于W塑性变形理论的表面起泡机制,可以合理解释等离子体作用下W表面起泡的取向依赖性。对于表面形成的纳米泡,在不同取向上形状各异,基于塑性变形理论的气泡形核机制是否适用,如何解释纳米泡的取向依赖性仍需要开展进一步的研究工作。

1.2 表面气泡长大机制

对于表面起泡行为是如何产生的,许多研究团队开展了相关研究工作。表面气泡的长大机制主要可归纳为塑性变形机制[16,28,29]、位错环挤出机制[28,30]和空位聚集机制[31]。其中,塑性变形机制和位错环挤出机制得到了更加广泛认可。

塑性变形机制是指较小尺寸的气泡在近表面通过塑性变形,长大成为尺寸较大气泡的过程,可以同时用来解释晶间气泡和晶内气泡的长大过程[16,17]。对于晶间气泡,通常能观察到在晶界处产生较大的裂纹,其扩展方向与低指数滑移系一致,这是由于材料通过位错滑移的塑性变形过程释放气泡内的过饱和气压而引起的应力[17]。对于晶内气泡,尺寸较大气泡的晶体取向依赖性和六边形台阶状气泡均与塑性变形机制有关[16]。一些纳米泡也被认为是通过塑性变形机制长大[32~34]。例如,Dubinko等[32,33]发现50 eV的高束流强度D等离子体辐照作用下,W近表层的位错密度增加,产生的原因是等离子体辐照导致材料表面产生温度梯度和应力梯度,从而引起W产生塑性变形。此外,他们还在W样品内观察到“咖啡豆”状的位错环,并推测是由于小气泡在长大过程中挤出位错环而产生的。然而遗憾的是,作者在该样品中并未观察到气泡,无法直接将气泡与位错环/位错联系起来,使得该理论存疑。而Guo等[34]的研究虽然观察到晶内气泡和其周围的位错缠结,但是并未观察到位错环,如图6[34]所示,作者认为气泡仅通过塑性变形机制长大,而不存在位错环挤出机制,这与Dubinko等[32,33]的观点相矛盾。

图6

图6   D等离子体辐照再结晶W的气泡和位错TEM像[34]

Fig.6   TEM images of recrystallized W exposed to D plasma[34]

(a) original morphology of recrystallized W

(b) intra-granular bubbles (Arrows show bubbles)

(c-f) bubbles and surrounding dislocations


位错环挤出机制本质上也是塑性变形过程,只是通常被单独划分为一种长大机制[28]。位错环挤出机制指的是自间隙原子从金属与气泡界面处被挤出而形成棱柱位错环,气泡内的气压是位错环挤出的驱动力。Condon和Schober[28]研究发现,位错环挤出机制是Al和Cu等金属中氢泡长大的主要机制。同时,位错环挤出也可用来解释W中氢泡的长大过程[35,36],其机制示意图如图7[28]所示。位错环挤出机制通常伴随着一列沿着Burgers矢量平行排列的位错环[28],因此这种平行排列的具有相同Burgers矢量的棱柱位错环成为位错环挤出机制的直接实验证据。Hou等[37]通过模拟研究提出位错环挤出机制是W中团簇长大成为氢泡的主要机制,很多计算模拟工作也从理论上支持了位错环挤出机制[38~40]

图7

图7   位错环挤出机制示意图[28]

Fig.7   Schematics of loop punching mechanism[28]

(a) H atoms accumulate at a nucleation site

(b) H bubble grows by continuous absorption of H atoms and outward release of dislocation loops ( b1—Burgers vector 1, b2—Burgers vector 2, p—gas pressure, μ—shear modulus)


在此基础上,Chen等[41]提出气泡的多阶段长大机制,完整阐述了表面气泡的生长过程。Chen等[41]通过实验证实了位错环挤出机制的存在,在晶内气泡附近观察到沿<111>方向平行排列的Burgers矢量为±12<111>的棱柱位错环(图8[41])和剪切位错环(图9[41]),并通过理论计算表明,这2种位错环分别由位错环挤出机制和剪切位错环发射机制产生。由此提出气泡长大过程由多阶段组成:当气泡尺寸较小时,通过挤出位错环的方式长大;当气泡处于中间尺寸时,通过剪切位错环发射机制长大;当气泡尺寸较大时,位错环挤出机制重新成为气泡长大的主要机制。

图8

图8   H等离子体辐照再结晶W中晶内气泡及附近位错环形貌[41]

Fig.8   Typical morphologies of dislocations loops distributed around the blister in recrystallized W after exposed to H plasma[41]

(a) four dislocation loop arrays distributed near the intra-granular H blister

(b) enlarge area 1 in Fig.8a, prismatic dislocation loops and “coffee-bean” loops distributed along [111¯] direction (Rectangularareas show the same group dislocations which observed under different g vector)


图9

图9   H等离子体辐照再结晶W中晶内气泡尖端的剪切位错环形貌[41]

Fig.9   Morphologies of shear dislocation loops arrayed at the tip of the intra-granular blisters in recrystallized W after exposed to H plasma (Rectangular areas show the same group dislocations which observed under different g vector) [41]

(a) g1 = 200 (b) g2 = 011¯ (c) g3 = 101¯ (d) g4 = 020 (e) g5 = 200 (f) g7 = 1¯1¯0


综上,在H/D等离子体辐照作用下W中表面气泡的长大机制研究方面,对于晶间气泡的长大机制,塑性变形机制得到了广泛认可。对于晶内气泡的长大机制,采用气泡的多阶段长大机制,可以合理解释气泡的长大过程。

1.3 表面气泡的形核机理

相较于表面气泡的长大机制,表面气泡的形核机理是低能高束流等离子体辐照W领域长久以来备受关注的难题。表面气泡可根据气泡出现的位置分为晶间气泡和晶内气泡2种。晶界被广泛认为是晶间气泡的初始形核位置[42,43],且可以通过观察表面起泡的截面形貌得到证实,即表面凸起下方对应的近表层沿晶界发生的开裂现象[17]。但是很多研究发现,起泡现象不仅出现在晶界处,也出现在单个晶粒内部,即晶内气泡[34,44],显然此时晶界形核理论不再适用。

晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论。关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成。然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48]。但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位。Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象。基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制。然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点。此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象。因此,空位形核理论并不能完全解释气泡的形核。

位错形核理论是指晶体内的位错捕获H/D原子,使其聚集在位错核心从而形成气泡。Terentyev等[47]利用热脱附技术观察到W内氘的滞留量与位错密度呈正相关。Chen等[54]首次在实验上证实了钢中存在的位错会捕获H原子。此外,很多计算方面的研究也支持位错是氢泡初始形核位置的观点。研究发现,W中的位错与H原子具有较强的结合能,例如H原子与螺型位错的结合能为0.55 eV[55],与<111>刃型位错的结合能为0.89 eV[56]。而且,H原子可通过位错通道进行快速扩散。Smirnov和Krasheninnikov[57]发现,H原子被1/2<111>螺型或刃型位错捕获后形成高H含量的盘状团簇。但是,这些计算结果只表明H原子会在位错上聚集,并未给出气泡的形成过程。Guo等[34]在实验上观察到在低能D等离子体辐照下,再结晶W晶粒内的气泡附近存在<001>刃型位错,以及位错缠结处存在<111>刃型位错反应,且气泡更倾向于在高位错密度处产生。根据Cottrell[58]理论,bcc金属发生塑性变形时,<100>刃型位错通过2个可动位错滑移和合并而生成,并作为解理裂纹初始形核位置。Guo等[34]推断氢泡的形核是由于H原子被<100>刃型位错捕获,形成盘状团簇并通过向外发射1/2<111>刃型位错进而继续扩展。然而,该研究中并没有直接实验证据能够说明被位错捕获的H原子是如何形成盘状团簇,以及盘状团簇是如何进一步成为氢泡。

Chen等[59]基于位错形核理论,通过直接实验证据和模拟计算,提出了气泡的{100}面形核机制。实验发现,晶粒内部的微纳尺度氢泡分布在{100}面上(如图10[59]所示),且气泡附近有<100>刃型位错存在。结合分子动力学计算(如图11[59]所示),气泡形核过程可分为4个阶段。(1) <100>刃型位错的生成。H等离子体辐照时表面热应力可能造成W表面发生局部塑性变形,从而产生位错及发生位错反应,生成了<100>刃型位错。(2) 间隙H原子在<100>刃型位错上聚集。H原子主要存在于bcc结构W的四面体间隙中,且间隙H原子与<100>刃型位错之间的结合能较高,使得大量间隙H原子聚集在位错核心处。(3) 氢泡在位错张应力区出现。被位错捕获的H原子倾向于聚集在位错的张应力区,沿着<100>方向开裂扩展,形成位于{100}面的氢泡。(4) 出现bcc向fcc转变的相变区。在氢泡形核初期,气泡内的气压引起周围区域发生相变,相变区成为间隙H原子继续向气泡中扩散的必经区域。据此提出了气泡的{100}面形核机制:H原子被<100>刃型位错捕获,聚集在位错的张应力区并在应力作用下沿<011>方向扩展形核,形成位于{100}面的气泡。

图10

图10   再结晶W表面晶内气泡的截面形貌[59]

Fig.10   TEM morphologies of intra-granular blisters of recrystallized tungsten, H blisters respectively located in(100) plane (area 1) (a), (001) plane (area 2) (b), and (010) plane (area 3) (c); the locations of areas 1-3 in W near-surface (d)[59]


图11

图11   氢泡在<100>刃型位错处的形核过程[59]

Fig.11   H blister nucleation process at <100> edge dislocation[59]

(a) time t = 1 ns, the edge dislocation with a <100> Burgers vector is not filled by H atoms (The inset enlarged figure shows the dislocation core structure)

(b) t = 5 ns, the dislocation core opens towards the <011> direction and accommodates more H atoms. The H-rich phase-transformation region is also formed at this stage (Inset shows the high magnified image of rectangular area)

(c) t = 10 ns, the dislocation core extends further

(d) t = 15 ns, with increased blister size, the phase-transformation region increases. The inset enlarged figure shows the crystal structure of the phase-transition region, which is fcc W with H filling all of its octahedral sites

(e) t = 20 ns, the H dislocation diffusion path is visible

(f) t = 25 ns, the final configuration is apparent; the phase-transition region grows continuously, following the blister tip (Inset shows the high magnified image of rectangular area)


表面起泡行为作为H/D等离子体辐照下W表面产生的最主要损伤行为,Chen等[59]提出的气泡的{100}面形核机制是目前较为接近氢泡最早形核时的状态,但是对于最初<100>刃型位错是如何生成的,尚无直接的实验证据。在W中,刃型<100>位错难以直接形成,其必然通过位错反应间接生成。其中一种可能性是用于辐照的W中本身存在具有<100>位错分量的混合型位错,在H原子进入W基体后发生了位错反应,生成<100>刃型位错。另一种可能是H与W中空位结合生成的V-H n 团簇诱发位错的生成,即H2分子产生内部应力导致各部分晶体收缩不均形成位错,或是过饱和空位团导致晶体塌陷形成位错环。对于初始<100>刃型位错是通过上述的其中一种机制形成,或是由2种机制共同作用形成,仍需要进一步的验证。因此,未来的研究工作需要通过进一步确认氢泡形核与位错类型的关联,探究初始<100>刃型位错的形成机理,从而完整地揭示气泡的初始形核机理。由于表面气泡的形核和长大过程以及气泡周围产生的位错(环)等缺陷,都将会对W的服役性能产生直接影响,因此有必要对表面气泡的形核机理开展更深入的研究,其将对抑制起泡行为,提升W的服役性能从而延长使用寿命起到指导作用。

2 等离子体作用下W的损伤与服役性能

W在等离子体辐照作用下产生的损伤结构不仅会造成表面形貌的改变,更为关键的是会引起服役性能的下降。本节从导热性能和力学性能2个方面总结了等离子体作用下W的损伤与服役性能的研究进展。在此基础上,介绍了粒子流/热流协同作用下W的损伤行为研究进展。

2.1 W的导热性能下降

在聚变堆PFMs候选材料中,W为热导率最高的材料[60]。在ITER稳态运行条件下,低能高束流的等离子体辐照会造成W表面的辐照损伤,损伤缺陷对电子和声子有散射作用,从而导致热导率降低。进一步地,在高热负荷作用下,W表面热量累积形成较高的温度梯度,产生较大的表面应力,最终导致开裂等失效行为,甚至可能导致局部熔化。Kajita等[61]发现He等离子体辐照下,W表面的纳米组织导致表面热量累积,在加载瞬态热负荷时,损伤层的表面温度显著升高,表明He辐照导致W损伤结构的热导率下降,热量集中在表层。Nishijimal等[62]发现在低能等离子体作用下W表面形成绒毛结构,导致W发生局部熔化。因此,等离子体辐照作用下W表面产生的损伤结构会导致表面损伤层热导率的下降,引起W在高热负荷作用下表面温度升高,从而使材料发生再结晶、开裂和熔化等行为[63]。由此可见,研究损伤层热导率的变化具有非常重要的意义。

由于等离子体辐照造成的表面损伤层深度通常在几十纳米量级[64],传统的测量热导率的稳态方法很难实现表面热导率的测量[63]。瞬态热反射法(transient thermoreflectance,TTR)利用了温度和反射率之间的比例关系,可以通过激光强度分布推导样品损伤层的热导率。Qu等[65]在PSI-2设备上采用40 eV He等离子体辐照W,并用TTR法测量了超薄损伤层的热导率,结果表明,辐照后W的热导率下降了2个数量级。W损伤层热导率的下降是由空位、间隙原子、He团簇、氦泡和空穴等辐照缺陷的散射作用引起的。

3ω法是一种利用电学信号测量热导率的方法,目前主要应用于薄膜热导率的测量[66]。Cui等[67]在773 K下用60 eV的He等离子体辐照W,辐照剂量为2 × 1024 m-2,采用该方法测量其热导率,结果表明损伤层的热导率比未辐照降低了至少80%,原因在于离子辐照引入的大量缺陷引起了电子散射。Tynan等[68]采用该法研究了铜离子(0.5~5.0 MeV)和D等离子体(100 eV)顺序辐照后W的热导率变化,结果表明损伤0.2 dpa的W室温下的热导率降低了71%。

根据热导率的计算公式,可以通过测量热扩散率间接反映热导率的变化[69]。瞬态光栅光谱学(TGS)能够以高时间分辨率(几秒)和高空间分辨率(约100 µm)测量微米级厚度表面层的热扩散率。其原理在于利用相干激光脉冲在样品表面形成瞬态光栅,通过分析衍射探测光束的振幅衰减,确定表面层的热扩散率。Reza等[70]采用该法测量了在50 eV D等离子体辐照下W的热扩散率变化,如图12[70]所示。结果表明,辐照后W的热扩散率显著下降。这可能是因为D等离子体辐照在W表面产生的气泡不仅会减少表面和基体之间的热接触,减小了传热截面,还会使电子的平均自由程大大缩短,导致热传导过程中产生强烈的电子-电子相互作用[63],从而降低热扩散率。

图12

图12   4种样品的热扩散率与辐照剂量和温度的关系[70]

Fig.12   Thermal diffusivity versus irradiation dose and temperature for four samples (Thermal diffusivity of unexposed W > 6.5 × 10-5 m2/s; HT—high temperature; LT—low temperature; HD—high dose sample; LD—low dose; LT: about 450 K; HT: about 650 K; LD: about 5 × 1025 m-2 (70 s); HD: about 1 × 1027 m-2 (1400 s))[70]


上述研究均从实验角度证实了辐照后W的热导率会有不同程度的下降,原因在于辐照缺陷对电子和声子的散射作用。热导率的下降可以作为辐照损伤程度的评判标准,测量热导率的变化可以反映等离子体作用下的损伤程度。热导率的测量精度很大程度上取决于测量方法及条件,因此很有必要研究精确测量损伤层热导率的方法,建立辐照缺陷和导热性能之间的关系。

2.2 W的力学性能退化

力学性能是评判材料服役性能和使用寿命的重要指标。等离子体辐照后材料的硬化和脆化是辐照后材料力学性能下降的主要表现形式,会引起材料的韧性下降,从而更容易发生脆性解理断裂而失效。因此,研究等离子体辐照作用下W的力学性能变化及其损伤机制,对未来评价壁材料的服役性能和寿命预测具有十分重要的意义。

关于低能(< 100 eV) H/D等离子体辐照对于W力学性能的影响,一般认为辐照引起的位错、气泡和孔洞等辐照缺陷是W产生硬化行为的主要原因[71]。Chen等[44]采用纳米压痕实验和理论模型计算分别获得了H等离子体在不同辐照温度下W的压痕硬度随压入深度的变化曲线,如图13[44]所示。结果表明,辐照温度为573 K的压痕硬度高于1273 K的试样,且1273 K的试样与原始W的压痕硬度相比没有明显变化,这是因为低温时在W表面产生的气泡周围出现了明显的位错,而高温时由于H的扩散能力增强,W中捕获的H量减少,未出现明显的气泡和位错。基于位错密度定量化推导出的硬度预测理论模型亦证实,由于辐照而引起的位错密度增加是引起辐照硬化的主要原因。Terentyev等[72]通过纳米压痕实验测量载荷-位移曲线,研究辐照对亚表面硬度和塑性的影响,认为辐照后W的硬度增加是由于纳米孔洞的存在,阻碍了压痕下方产生的几何必需位错的运动。Zayachuk等[73]采用纳米压痕技术对D等离子体辐照的轧制态W和再结晶态W样品进行了硬度测试,硬度均有显著增加,且再结晶W的硬化程度比轧制态W更高,推测是由于轧制态W晶粒中的位错捕获了扩散的D原子,降低了D原子的扩散率,进而提高了硬化率。Fang等[74]利用纳米压痕法研究了W在D等离子体辐照下的力学性能,并对样品在不同的D脱附时间进行压痕测试,结果表明,W出现了明显的硬化现象,原因是D降低了缺陷的形成能,促进了W中的位错形核。在施加载荷的过程中,位错增殖及位错间相互作用导致了辐照硬化,并且由于W晶格中D原子的存在钉扎了位错,导致硬度增加。

图13

图13   不同辐照温度下W的压痕硬度变化[44]

Fig.13   Indentation hardness of W at different irradiation temperatures[44]


然而由于低能(< 100 eV) H/D等离子体辐照对W表面造成的损伤层较浅,导致辐照前后材料的力学性能变化容易受纳米压痕的尺寸效应[75~77]或系统误差等因素干扰。因此,有必要进一步探究严谨可靠的实验手段和数据分析方法,建立微纳尺度的损伤结构与力学性能的内在联系,进而从根本上揭示低能H/D等离子体辐照对W力学性能的影响机制。

2.3 粒子流/热流协同作用下的损伤行为

W在服役过程中不仅要承受稳态等离子体辐照,还可能承受瞬态高热流事件。通常采用的研究方法有2种:第1种是顺序辐照,即对W先进行等离子体辐照,再进行瞬态高热流辐照;第2种是同时辐照,即对W同时进行等离子体辐照和瞬态高热流辐照。

关于顺序辐照,Van Eden等[78]利用H等离子体对W表面进行辐照,再利用激光模拟瞬态高热流作用,发现在相同的激光参数条件下,H等离子体辐照后的W表面更容易发生熔化行为,说明H等离子体辐照造成的缺陷导致W热导率降低,进而使其在受到热负荷作用时,辐照损伤更加严重。等离子体辐照对于W再服役力学性能的退化,主要体现在发生氢脆和韧性下降。Wirtz等[79~81]利用H等离子体对W进行辐照后,再采用电子束模拟瞬态高热流,发现在预先受到等离子体辐照的样品表面,高热流造成的开裂深度更浅但是裂纹的数量大幅增加,而且裂纹还会向未经过热负荷辐照的区域扩展。这可能是由于H等离子体辐照产生的氢泡会降低塑性,H原子降低了化学键作用力,形成氢化物等原因,造成晶格内部出现过饱和应力从而发生氢脆,进而使得W在热负荷作用下开裂加重[82]。贾玉振[26]利用稳态D等离子体和脉冲D等离子体对W进行顺序辐照,其中脉冲D等离子体能量约为2 eV,主要是等离子体的高热流作用。结果发现,等离子体辐照后在W的内部形成氘泡,当材料再受到高热流作用时,氘泡出现明显长大的现象,气泡边缘也出现了明显的开裂现象,并且表面出现了大量孔洞。该现象的产生可能是由于等离子体脉冲的高热量造成表面气泡表层的应变速率提高,从而导致W的韧性明显下降,因此表面气泡发生开裂现象。孔洞形成的原因也是高温下W表面氘泡长大破裂的原因[26]

由此可见,顺序辐照时,首先等离子体辐照导致W近表层产生气泡和位错等缺陷,这些辐照缺陷可能引起W的热导率降低和表面硬化现象,导致W在瞬态高热流作用下更容易发生表面开裂和熔化。因此,等离子体辐照条件下W再服役性能降低的主要原因是等离子体辐照引起了W热导率和力学性能的下降。

关于同时辐照,贾玉振[26]同时利用稳态D等离子体和脉冲等离子体(瞬态高热流作用)对W进行了辐照,认为瞬态高热流作用对表面起泡行为有显著影响。当热流密度较低时,瞬态热流会导致表面气泡内部的气体压强增大,从而促进表面气泡的形成。当热流密度较高时,瞬态高热流会抑制表面起泡行为,可能的原因是高温造成近表面D滞留量的下降。另外,Jia等[83]的研究也发现,瞬态高热流对于表面起泡行为的促进作用,在[110]和[001]表面较为明显。主要原因是在稳态等离子体辐照条件下,[110]和[001]表面并没有明显的表面起泡。当瞬态高热流作用时,气泡内压强增大会造成表面变形,因此瞬态高热流对表面起泡行为的促进作用较为明显。而在[111]表面上,稳态等离子体辐照条件下大部分氘泡可以引起表面起泡,此时瞬态高热流对起泡行为的促进作用不明显。

同时辐照时的协同增强作用导致W表面裂纹的产生阈值更低[84]。Morgan等[84]利用稳态等离子体和激光脉冲引起的瞬态高热流对W表面分别进行了同时辐照、顺序辐照和稳态等离子体/瞬态高热流单独辐照,结果如图14[84]所示。在同时辐照条件下,稳态等离子体和瞬态高热流对W的表面损伤具有协同增强作用,辐照过程中造成的辐照缺陷的演变,导致W出现不同的表面损伤行为。相比于单独稳态等离子体辐照、瞬态热负荷作用和顺序辐照,同时辐照W的损伤阈值更低,表明稳态等离子体和瞬态高热流的协同作用损伤程度更高。

图14

图14   W受到仅稳态等离子体辐照、仅瞬态高热流脉冲、顺序辐照、同时辐照后的表面形貌[84]

Fig.14   Morphologies of W after different exposures[84]

(a) only steady state plasma exposure

(b) only transient state high heat loads laser

(c) consecutive exposure, laser induced transient heat loads on pre-exposed plasma

(d) simultaneous exposure


因此,未来的研究需要构建微纳尺度损伤结构、导热性能和力学性能关系的模型,进而分析粒子流/热流协同作用对W损伤行为的影响,为提高W服役性能的研究奠定理论基础。

3 总结与展望

本文围绕H/D等离子体辐照作用下W的损伤行为,从表面起泡行为和服役性能2方面详细介绍了其研究现状。表面气泡的形核和长大与位错(环)等缺陷有关,这些辐照缺陷会导致W的热导率、力学性能和服役性能的下降,以及粒子流/高热流条件下的不同损伤行为。因此,有必要建立微纳尺度损伤的组织结构与服役性能内在联系,进而通过调控W的微观组织以实现对服役性能的提升和使用寿命的延长。

表面起泡是等离子体作用下W最主要的微纳尺度损伤行为。气泡的形核机制有待进一步的研究,目前,无法从实验上证实气泡形核是否与除<100>刃位错的其他位错类型有关,对于初始<100>刃型位错的起源也缺少有利的实验证据。因此,未来的工作可以通过采用塑性变形和增材制造等方法,调控W的微观组织,形成不同位错类型的位错组态,进而开展辐照实验进行验证。在此基础上,揭示在等离子体作用下W的微纳尺度损伤规律。

对于损伤组织结构的性能研究,首先应该进一步发展可靠的表面热导测试技术和力学性能测试技术,以实现对材料物理性能和力学性能的准确测量,进而建立损伤组织结构与物理性能和力学性能之间的关联,为服役性能的研究奠定理论和实验基础。

建立损伤结构和服役性能之间的内在联系,可以为W的微观组织调控提供理论基础。通过大塑性变形、增材制造和化学气相沉积等工艺方法调控W的晶粒尺寸、晶界结构和晶粒取向,从而实现:(1) 抑制W表面起泡行为,提高再服役性能;(2) 揭示辐照缺陷对性能的影响,进一步建立辐照后W的损伤评价体系;(3) 对材料在实际服役过程中损伤情况进行预测,以满足未来聚变堆对面对等离子体材料的服役性能要求。

综上所述,进一步开展等离子体作用下W的损伤行为与性能评价的研究,不仅将为W的服役性能的评价和寿命评估提供理论基础,而且也将为未来托卡马克装置中的W部件的研发提供有力支撑。

参考文献

Knaster J, Moeslang A, Muroga T.

Materials research for fusion

[J]. Nat. Phys., 2016, 12: 424

[本文引用: 1]

Barbarino M.

A brief history of nuclear fusion

[J]. Nat. Phys., 2020, 16: 890

DOI     

Institute of Plasma Physics, Chinese Academy of Sciences, Bureau of Basic Science, Chinese Academy of Sciences.

Experimental and advanced superconducting Tokamak

[J]. Bull. Chin. Acad. Sci., 2008, 23: 474

[本文引用: 1]

中国科学院等离子体物理研究所, 中国科学院基础科学局.

全超导托卡马克核聚变实验装置

[J]. 中国科学院院刊, 2008, 23: 474

[本文引用: 1]

ITER Organiazation.

ITER, the way to new energy

[DB/OL]. [2014-05-20].

[本文引用: 2]

Xu Z Y.

International thermonuclear experimental reactor building and fusion materials study

[J]. Atomic Energy Sci. Technol., 2005, 39: 46

[本文引用: 1]

许增裕.

国际热核实验堆的建造与聚变堆材料研究

[J]. 原子能科学技术, 2005, 39: 46

[本文引用: 1]

Ongena J, Koch R, Wolf R, et al.

Magnetic-confinement fusion

[J]. Nat. Phys., 2016, 12: 398

DOI     

Dolan T J.

Plasma physics and fusion energy

[J]. Fusion Sci. Technol., 2017, 54: 1010

DOI      URL     [本文引用: 1]

Pitts R A, Bonnin X, Escourbiac F, et al.

Physics basis for the first ITER tungsten divertor

[J]. Nucl. Mater. Energy, 2019, 20: 100696

[本文引用: 1]

Barabash V, Federici G, Matera R, et al.

Armour materials for the ITER plasma facing components

[J]. Phys. Scr., 1999, 1999: 74

Linke J, Lorenzetto P, Majerus P, et al.

EU development of high heat flux components

[J]. Fusion Sci. Technol., 2005, 47: 678

DOI      URL     [本文引用: 1]

Šmid I, Pacher H D, Vieider G, et al.

Lifetime of Be-, CFC- and W-armoured ITER divertor plates

[J]. J. Nucl. Mater., 1996, 233-237: 701

DOI      URL     [本文引用: 1]

Tokunaga K, Baldwin M J, Doerner R P, et al.

Blister formation and deuterium retention on tungsten exposed to low energy and high flux deuterium plasma

[J]. J. Nucl. Mater., 2005, 337-339: 887

DOI      URL     [本文引用: 1]

Shu W M, Luo G N, Yamanishi T.

Mechanisms of retention and blistering in near-surface region of tungsten exposed to high flux deuterium plasmas of tens of eV

[J]. J. Nucl. Mater., 2007, 367-370: 1463

DOI      URL    

Shu W M.

High-dome blisters formed by deuterium-induced local superplasticity

[J]. Appl. Phys. Lett., 2008, 92: 211904

DOI      URL     [本文引用: 1]

Fukumoto M, Ohtsuka Y, Ueda Y, et al.

Blister formation on tungsten damaged by high energy particle irradiation

[J]. J. Nucl. Mater., 2008, 375: 224

DOI      URL     [本文引用: 1]

Jia Y Z, Liu W, Xu B, et al.

Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature

[J]. J. Nucl. Mater., 2016, 477: 165

DOI      URL     [本文引用: 12]

Lindig S, Balden M, Alimov V K, et al.

Subsurface morphology changes due to deuterium bombardment of tungsten

[J]. Phys. Scr., 2009, 2009: 014040

[本文引用: 5]

Roth J, Schmid K.

Hydrogen in tungsten as plasma-facing material

[J]. Phys. Scr., 2011, 2011: 014031

Roth J.

Blistering and bubble formation

[A]. Applications of Ion Beams to Materials [C]. Warwick: University of Warwick, 1975: 280

[本文引用: 1]

Ye M Y, Kanehara H, Fukuta S, et al.

Blister formation on tungsten surface under low energy and high flux hydrogen plasma irradiation in NAGDIS-I

[J]. J. Nucl. Mater., 2003, 313-316: 72

DOI      URL     [本文引用: 2]

Jia Y Z, De Temmerman G, Luo G N, et al.

Surface morphology and deuterium retention in tungsten exposed to high flux D plasma at high temperatures

[J]. J. Nucl. Mater., 2015, 457: 213

DOI      URL     [本文引用: 5]

Luo G N, Shu W M, Nishi M.

Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10-100 eV plasmas

[J]. Fusion Eng. Des., 2006, 81: 957

DOI      URL     [本文引用: 1]

Shimada T, Kikuchi H, Ueda Y, et al.

Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation

[J]. J. Nucl. Mater., 2003, 313-316: 204

DOI      URL     [本文引用: 2]

Shu W M, Kawasuso A, Miwa Y, et al.

Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315 K

[J]. Phys. Scr., 2007, 2007: 96

[本文引用: 4]

Miyamoto M, Nishijima D, Ueda Y, et al.

Observations of suppressed retention and blistering for tungsten exposed to deuterium-helium mixture plasmas

[J]. Nucl. Fusion, 2009, 49: 065035

[本文引用: 1]

Jia Y Z.

Research on damage behavior of tungsten materials under deuterium plasma/transient high heat fluxes

[D]. Beijing: Tsinghua University, 2016

[本文引用: 6]

贾玉振.

氘等离子体/瞬态高热流作用下W材料的损伤研究

[D]. 北京: 清华大学, 2016

[本文引用: 6]

Xu H Y.

Surface modification on tungsten exposed to low energy high flux deuterium plasmas

[D]. Beijing: Tsinghua University, 2013

[本文引用: 4]

徐海燕.

低能高束流氘等离子体作用下钨的起泡行为研究

[D]. 北京: 清华大学, 2013

[本文引用: 4]

Condon J B, Schober T.

Hydrogen bubbles in metals

[J]. J. Nucl. Mater., 1993, 207: 1

DOI      URL     [本文引用: 8]

Alimov V K, Roth J, Mayer M.

Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers

[J]. J. Nucl. Mater., 2005, 337-339: 619

DOI      URL     [本文引用: 1]

Hu W H, Luo F F, Shen Z Y, et al.

Hydrogen bubble formation and evolution in tungsten under different hydrogen irradiation conditions

[J]. Fusion Eng. Des., 2015, 90: 23

DOI      URL     [本文引用: 1]

Liu Y N, Ahlgren T, Bukonte L, et al.

Mechanism of vacancy formation induced by hydrogen in tungsten

[J]. AIP Adv., 2013, 3: 122111

DOI      URL     [本文引用: 1]

We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

Dubinko A V, Terentyev D A, Zhurkin E E.

Study of the microstructure induced by high-flux plasma via transmission electron microscopy

[J]. J.Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2018, 12: 792

[本文引用: 3]

Dubinko A, Terentyev D, Bakaeva A, et al.

Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM

[J]. Appl. Surf. Sci., 2017, 393: 330

DOI      URL     [本文引用: 2]

Guo W G, Ge L, Yuan Y, et al.

(001) edge dislocation nucleation mechanism of surface blistering in tungsten exposed to deuterium plasma

[J]. Nucl. Fusion, 2019, 59: 026005

[本文引用: 8]

Xie H X, Gao N, Xu K, et al.

A new loop-punching mechanism for helium bubble growth in tungsten

[J]. Acta Mater., 2017, 141: 10

DOI      URL     [本文引用: 1]

Li X C, Liu Y N, Yu Y, et al.

Helium defects interactions and mechanism of helium bubble growth in tungsten: A molecular dynamics simulation

[J]. J. Nucl. Mater., 2014, 451: 356

DOI      URL     [本文引用: 1]

Hou J, Kong X S, Wu X B, et al.

Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals

[J]. Nat. Mater., 2019, 18: 833

DOI      PMID      [本文引用: 1]

The interplay between hydrogen and nanovoids, despite long being recognized as a central factor in hydrogen-induced damage in structural materials, remains poorly understood. Here, focusing on tungsten as a model body-centred cubic system, we explicitly demonstrate sequential adsorption of hydrogen adatoms on Wigner-Seitz squares of nanovoids with distinct energy levels. Interaction between hydrogen adatoms on nanovoid surfaces is shown to be dominated by pairwise power-law repulsion. We establish a predictive model for quantitative determination of the configurations and energetics of hydrogen adatoms in nanovoids. This model, combined with the equation of states of hydrogen gas, enables the prediction of hydrogen molecule formation in nanovoids. Multiscale simulations, performed based on our model, show good agreement with recent thermal desorption experiments. This work clarifies fundamental physics and provides a full-scale predictive model for hydrogen trapping and bubbling in nanovoids, offering long-sought mechanistic insights that are crucial for understanding hydrogen-induced damage in structural materials.

Kolasinski R D, Shimada M, Oya Y, et al.

A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten

[J]. J. Appl. Phys., 2015, 118: 073301

[本文引用: 1]

Kolasinski R D, Cowgill D F, Donovan D C, et al.

Mechanisms of gas precipitation in plasma-exposed tungsten

[J]. J. Nucl. Mater., 2013, 438: S1019

DOI      URL    

Kolasinski R D, Cowgill D F, Causey R A.

A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials

[J]. J. Nucl. Mater., 2011, 415: S676

DOI      URL     [本文引用: 1]

Chen W Q, Wang X Y, Chiu Y L, et al.

Growth mechanism of subsurface hydrogen cavities in tungsten exposed to low-energy high-flux hydrogen plasma

[J]. Acta Mater., 2020, 193: 19

DOI      URL     [本文引用: 8]

Manhard A, Von Toussaint U, Balden M, et al.

Microstructure and defect analysis in the vicinity of blisters in polycrystalline tungsten

[J]. Nucl. Mater. Energy, 2017, 12: 714

[本文引用: 1]

Valles G, Panizo-Laiz M, González C, et al.

Influence of grain boundaries on the radiation-induced defects and hydrogen in nanostructured and coarse-grained tungsten

[J]. Acta Mater., 2017, 122: 277

DOI      URL     [本文引用: 1]

Chen W Q, Xiao X Z, Pang B, et al.

Irradiation hardening induced by blistering in tungsten due to low-energy high flux hydrogen plasma exposure

[J]. J. Nucl. Mater., 2019, 522: 11

DOI      [本文引用: 6]

In this work, the microstructure evolution in the near-surface of tungsten under hydrogen (H) plasma exposure conditions was observed by means of scanning electron microscopy (SEM), plasma focused ion beam (FIB) and transmission electron microscopy (TEM) techniques. Blisters, with existing dislocations distributed around obviously, were observed beneath the tungsten surface when the exposure temperature was 573 K, which was rarely reported in previous studies. However, H bombardment at 1273 K did not lead to the formation of blister-like microstructures. Correspondingly, irradiation hardening occurred after low temperature exposure, but not after high temperature exposure, according to the Berkovich nano-indentation experiments. In order to characterize the indentation size effect and irradiation hardening behavior of plasma-exposed materials, a mechanistic model was proposed for the hardness-depth relationship. A good agreement between the experimental indentation data and theoretical results revealed that plasma-induced dislocations play a dominant role in determining the increase of hardness for H plasma-exposed tungsten. (C) 2019 Published by Elsevier B.V.

Liu Y L, Zhang Y, Zhou H B, et al.

Vacancy trapping mechanism for hydrogen bubble formation in metal

[J]. Phys. Rev., 2009, 79B: 172103

[本文引用: 3]

Geng W T, Wan L, Du J P, et al.

Hydrogen bubble nucleation in α-iron

[J]. Scr. Mater., 2017, 134: 105

DOI      URL     [本文引用: 1]

Terentyev D, De Temmerman G, Morgan T W, et al.

Effect of plastic deformation on deuterium retention and release in tungsten

[J]. J. Appl. Phys., 2015, 117: 083302

[本文引用: 2]

Shu W M, Wakai E, Yamanishi T.

Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma

[J]. Nucl. Fusion, 2007, 47: 201

DOI      URL     [本文引用: 2]

Fukai Y, Ōkuma N.

Formation of superabundant vacancies in Pd hydride under high hydrogen pressures

[J]. Phys. Rev. Lett., 1994, 73: 1640

PMID      [本文引用: 1]

Fukai Y, Ishii Y, Goto Y, et al.

Formation of superabundant vacancies in Pd-H alloys

[J]. J. Alloys Compd., 2000, 313: 121

DOI      URL    

Fukai Y.

Formation of superabundant vacancies in M-H alloys and some of its consequences: A review

[J]. J. Alloys Compd., 2003, 356-357: 263

DOI      URL    

Sugimoto H, Fukai Y.

Hydrogen-induced superabundant vacancy formation by electrochemical methods in bcc Fe: Monte Carlo simulation

[J]. Scr. Mater., 2017, 134: 20

DOI      URL     [本文引用: 1]

Kong X S, You Y W, Fang Q F, et al.

The role of impurity oxygen in hydrogen bubble nucleation in tungsten

[J]. J. Nucl. Mater., 2013, 433: 357

DOI      URL     [本文引用: 1]

Chen Y S, Lu H Z, Liang J T, et al.

Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates

[J]. Science, 2020, 367: 171

DOI      URL     [本文引用: 1]

\n Hydrogen is important for energy applications such as fuel cells but tends to diffuse into materials and make them more susceptible to fracture. Chen\n et al.\n tackled the challenge of identifying the exact location of hydrogen atoms in two common steels. The light weight and high mobility of hydrogen creates serious problems with conventional techniques. The authors used cryo-transfer atom probe tomography to show that hydrogen is pinned to various interfaces in the steels. This direct look into hydrogen trapping should help with the development of materials that are more resistant to hydrogen embrittlement.\n

Terentyev D, Dubinko V, Bakaev A, et al.

Dislocations mediate hydrogen retention in tungsten

[J]. Nucl. Fusion, 2014, 54: 042004

[本文引用: 1]

Bakaeva A, Terentyev D, De Temmerman G, et al.

Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

[J]. J. Nucl. Mater., 2016, 479: 307

DOI      URL     [本文引用: 1]

Smirnov R D, Krasheninnikov S I.

Stress-induced hydrogen self-trapping in tungsten

[J]. Nucl. Fusion, 2018, 58: 126016

DOI      URL     [本文引用: 1]

Cottrell A H.

The 1958 institute of metals division lecture—Theory of brittle fracture in steel and similar metals

[J]. Trans. Am. Inst. Min. Metall. Eng., 1958, 212: 192

[本文引用: 1]

Chen W Q, Wang X Y, Li K L, et al.

Nucleation mechanism of intra-granular blisters in tungsten exposed to hydrogen plasma

[J]. Scr. Mater., 2020, 187: 243

DOI      URL     [本文引用: 8]

Ueda Y, Schmid K, Balden M, et al.

Baseline high heat flux and plasma facing materials for fusion

[J]. Nucl. Fusion, 2017, 57: 092006

[本文引用: 1]

Kajita S, De Temmerman G, Morgan T, et al.

Thermal response of nanostructured tungsten

[J]. Nucl. Fusion, 2014, 54: 033005

[本文引用: 1]

Nishijima D, Doerner R P, Iwamoto D, et al.

Response of fuzzy tungsten surfaces to pulsed plasma bombardment

[J]. J. Nucl. Mater., 2013, 434: 230

DOI      URL     [本文引用: 1]

Qu S L.

Research on micro-nano scale damage on tungsten surface under helium irradiation

[D]. Beijing: Tsinghua University, 2018

[本文引用: 3]

曲世联.

氦辐照条件下钨材料表面微纳尺度的损伤研究

[D]. 北京: 清华大学, 2018

[本文引用: 3]

Miyamoto M, Mikami S, Nagashima H, et al.

Systematic investigation of the formation behavior of helium bubbles in tungsten

[J]. J. Nucl. Mater., 2015, 463: 333

DOI      URL     [本文引用: 1]

Qu S L, Sun H, Kreter A, et al.

Degradation of thermal conductivity of the damaged layer of tungsten irradiated by helium-plasma

[J]. Fusion Eng. Des., 2018, 137: 97

DOI      URL     [本文引用: 1]

Cahill D G.

Thermal conductivity measurement from 30 to 750 K: The 3ω method

[J]. Rev. Sci. Instrum., 1990, 61: 802

DOI      URL     [本文引用: 1]

An ac technique for measuring the thermal conductivity of dielectric solids between 30 and 750 K is described. This technique, the 3ω method, can be applied to bulk amorphous solids and crystals as well as amorphous films tens of microns thick. Errors from black-body radiation are calculated to be less than 2% even at 1000 K. Data for a-SiO2, Pyrex 7740, and Pyroceram 9606 are compared to results obtained by conventional techniques.

Cui S, Simmonds M, Qin W J, et al.

Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method

[J]. J. Nucl. Mater., 2017, 486: 267

DOI      URL     [本文引用: 1]

Tynan G R, Doerner R P, Barton J, et al.

Deuterium retention and thermal conductivity in ion-beam displacement-damaged tungsten

[J]. Nucl. Mater. Energy, 2017, 12: 164

[本文引用: 1]

Marinelli G, Martina F, Lewtas H, et al.

Microstructure and thermal properties of unalloyed tungsten deposited by wire + arc additive manufacture

[J]. J. Nucl. Mater., 2019, 522: 45

DOI      [本文引用: 1]

Tungsten is considered as one of the most promising materials for nuclear fusion reactor chamber applications. Wire + Arc Additive Manufacture has already demonstrated the ability to deposit defect-free large-scale tungsten structures, with considerable deposition rates. In this study, the microstructure of the as-deposited and heat-treated material has been characterized; it featured mainly large elongated grains for both conditions. The heat treatment at 1273 K for 6 h had a negligible effect on microstructure and on thermal diffusivity. Furthermore, the linear coefficient of thermal expansion was in the range of 4.5 x 10(-6) mu m m(-1) K-1 to 6.8 x 10(-6) mu m m(-1) K-1; the density of the deposit was as high as 99.4% of the theoretical tungsten density; the thermal diffusivity and the thermal conductivity were measured and calculated, respectively, and seen to decrease considerably in the temperature range between 300 K and 1300 K, for both testing conditions. These results showed that Wire + Arc Additive Manufacture can be considered as a suitable technology for the production of tungsten components for the nuclear sector. (C) 2019 Elsevier B.V.

Reza A, Zayachuk Y, Yu H B, et al.

Transient grating spectroscopy of thermal diffusivity degradation in deuterium implanted tungsten

[J]. Scr. Mater., 2020, 174: 6

DOI      URL     [本文引用: 4]

Shi J Q, Wu K T, Shen Y.

Radiation hardening effect of tungsten

[J]. Trans. Mater. Heat Treat., 2019, 40(11): 1

[本文引用: 1]

史佳庆, 吴恺慆, 沈 耀.

钨的辐照硬化效应

[J]. 材料热处理学报, 2019, 40(11): 1

[本文引用: 1]

Terentyev D, Bakaeva A, Pardoen T, et al.

Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

[J]. J. Nucl. Mater. 2016, 476: 1

DOI      URL     [本文引用: 1]

Zayachuk Y, Armstrong D E J, Bystrov K, et al.

Nanoindentation study of the combined effects of crystallography, heat treatment and exposure to high-flux deuterium plasma in tungsten

[J]. J. Nucl. Mater., 2017, 486: 183

DOI      URL     [本文引用: 1]

Fang X F, Kreter A, Rasinski M, et al.

Hydrogen embrittlement of tungsten induced by deuterium plasma: Insights from nanoindentation tests

[J]. J. Mater. Res., 2018, 33: 3530

DOI      URL     [本文引用: 1]

Gerberich W W, Tymiak N I, Grunlan J C, et al.

Interpretations of indentation size effects

[J]. J. Appl. Mech., 2002, 69: 433

DOI      URL     [本文引用: 1]

For very shallow indentations in W, Al, Au, and Fe-3wt%Si single crystals, hardness decreased with increasing depth irrespective of increasing or decreasing strain gradients. As such, strain gradient theory appears insufficient to explain the indentation size effect (ISE) at depths less than several hundred nanometers. Present research links the ISE to a ratio between the energy of newly created surface and plastic strain energy dissipation. Also, the contact surface to plastic volume ratio was nearly constant for a range of shallow depths. Based on the above, an analytical model of hardness versus depth provides a satisfactory fit to the experimental data and correlates well with embedded atom simulations.

Nix W D, Gao H J.

Indentation size effects in crystalline materials: A law for strain gradient plasticity

[J]. J. Mech. Phys. Solids, 1998, 46: 411

DOI      URL    

Durst K, Backes B, Göken M.

Indentation size effect in metallic materials: Correcting for the size of the plastic zone

[J]. Scr. Mater., 2005, 52: 1093

DOI      URL     [本文引用: 1]

Van Eden G G, Morgan T W, Van Der Meiden H J, et al.

The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling

[J]. Nucl. Fusion, 2014, 54: 123010

DOI      URL     [本文引用: 1]

Wirtz M, Bardin S, Huber A, et al.

Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material

[J]. Nucl. Fusion, 2015, 55: 123017

DOI      URL     [本文引用: 1]

Wirtz M, Linke J, Pintsuk G, et al.

Thermal shock behaviour of tungsten after high flux H-plasma loading

[J]. J. Nucl. Mater., 2013, 443: 497

DOI      URL    

Wirtz M, Linke J, Pintsuk G, et al.

Influence of high flux hydrogen-plasma exposure on the thermal shock induced crack formation in tungsten

[J]. J. Nucl. Mater., 2012, 420: 218

DOI      URL     [本文引用: 1]

Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 317

[本文引用: 1]

褚武扬, 乔利杰, 李金许 . 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 317

[本文引用: 1]

Jia Y Z, Liu W, Xu B, et al.

Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading

[J]. Nucl. Fusion, 2015, 55: 113015

DOI      URL     [本文引用: 1]

Morgan T W, Zielinski J J, Hensen B J, et al.

Reduced damage threshold for tungsten using combined steady state and transient sources

[J]. J. Nucl. Mater., 2013, 438: S784

DOI      URL     [本文引用: 5]

/