Tungsten is the most promising candidate as plasma facing material in nuclear fusion reactors because of its high melting point, high thermal conductivity, low sputtering rate, and low tritium retention. However, when exposed to low-energy high flux plasma, tungsten undergoes micro/nanoscale damage, such as surface blistering and surface nanostructure, on its surface. These damage structures can degrade thermal and mechanical properties, thereby adversely affecting the reservice performance of tungsten. In this paper, the current research status of the damage behavior of tungsten when exposed to H/D plasma was focused. The research progress of the mechanisms of surface blistering nucleation and growth, as well as the effects of irradiation defects on thermal conductivity, mechanics, and service performance was summarized. These data can provide a theoretical basis for optimizing the microstructure of tungsten materials, thus improving its service performance and extending its service life.
Keywords:nuclear fusion;
tungsten;
plasma;
irradiation damage;
service performance
LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. Acta Metallurgica Sinica, 2023, 59(8): 986-1000 DOI:10.11900/0412.1961.2023.00078
W具有高熔点、导热性好、低溅射产额和低T滞留等优势,无论是ITER计划还是中国聚变工程试验(China fusion engineering test reactor,CFETR),均把W作为偏滤器的候选材料[11]。然而W在服役时会受到等离子体辐照作用,导致材料表面产生微纳尺度损伤结构,如表面起泡、绒毛结构、孔洞和表面纳米组织等,从而引起热导率下降、表面硬化和脆化,使材料更易发生表面破裂和剥离,影响其再服役性能,进而对核聚变装置的安全性造成危害。
Fig.1
Surface (a, c, e) and crosss-ection (b, d, f) morphologies of surface blistering of D plasma exposed W with surface normal directions close to [111] (a, b), [110] (c, d), and [001] (e, f) directions, respectively[16] (Red arrows in Fig.1d show two blisters caused by the gas pressure inside the cavities beneath the surface; A blue arrow in Fig.1d shows a large cavity along the grain boundary; Blue arrows in Fig.1f show that there were also cavities beneath the surface, but these cavities did not induce any obvious blisters on the surface at all)
Fig.2
Surface morphologies of W samples exposed to D plasma (943 K) at irradiation doses of 1.55 × 1026 m-2 (a), 4.21 × 1026 m-2 (b), and 7.05 × 1026 m-2 (c); and surface bubble size and density distribution statistics (d)[21]
Fig.3
Surface blistering morphologies of surface bubbles on [111] planeswith different grain orientations (a-c)[16] (The specific grain orientations are marked in the [110] direction)
Fig.4
Surface blistering model based on plastic deformation mechanism[16]
表面纳米泡也属于等离子体辐照后W表面起泡现象,并且同样具有取向依赖性。徐海燕[27]在低能高束流 D 辐照W表面观察到了形成的纳米泡,如图5[27]所示。按照组织的形貌,纳米泡包括三角形组织、条带状组织和海绵组织。纳米泡在近{111}取向晶粒内为三角形,在近{001}取向晶粒内为海绵状,其余取向为条带状,具有显著的取向依赖性。
Fig.5
Surface bubbles and nanobubbles of W after D plasma irradiation (38 eV, 1024 m-2·s-1, 423 K, 7 × 1026 m-2)[27] (a, b) surface bubbles viewed vertically (a) and tilted at 45° (b) (c, d) nanobubbles in SEM conventional mode (c) and Inlens mode (d) (Arrows in Fig.5d show the morphologies of broken nanobubbles)
(b) H bubble grows by continuous absorption of H atoms and outward release of dislocation loops ( b1—Burgers vector 1, b2—Burgers vector 2, p—gas pressure, μ—shear modulus)
Fig.8
Typical morphologies of dislocations loops distributed around the blister in recrystallized W after exposed to H plasma[41]
(a) four dislocation loop arrays distributed near the intra-granular H blister
(b) enlarge area 1 in Fig.8a, prismatic dislocation loops and “coffee-bean” loops distributed along [11] direction (Rectangularareas show the same group dislocations which observed under different g vector)
Fig.9
Morphologies of shear dislocation loops arrayed at the tip of the intra-granular blisters in recrystallized W after exposed to H plasma (Rectangular areas show the same group dislocations which observed under different g vector) [41]
晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论。关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成。然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48]。但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位。Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象。基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制。然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点。此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象。因此,空位形核理论并不能完全解释气泡的形核。
Fig.10
TEM morphologies of intra-granular blisters of recrystallized tungsten, H blisters respectively located in(100) plane (area 1) (a), (001) plane (area 2) (b), and (010) plane (area 3) (c); the locations of areas 1-3 in W near-surface (d)[59]
Fig.11
H blister nucleation process at <100> edge dislocation[59]
(a) time t = 1 ns, the edge dislocation with a <100> Burgers vector is not filled by H atoms (The inset enlarged figure shows the dislocation core structure)
(b) t = 5 ns, the dislocation core opens towards the <011> direction and accommodates more H atoms. The H-rich phase-transformation region is also formed at this stage (Inset shows the high magnified image of rectangular area)
(c) t = 10 ns, the dislocation core extends further
(d) t = 15 ns, with increased blister size, the phase-transformation region increases. The inset enlarged figure shows the crystal structure of the phase-transition region, which is fcc W with H filling all of its octahedral sites
(e) t = 20 ns, the H dislocation diffusion path is visible
(f) t = 25 ns, the final configuration is apparent; the phase-transition region grows continuously, following the blister tip (Inset shows the high magnified image of rectangular area)
表面起泡行为作为H/D等离子体辐照下W表面产生的最主要损伤行为,Chen等[59]提出的气泡的{100}面形核机制是目前较为接近氢泡最早形核时的状态,但是对于最初<100>刃型位错是如何生成的,尚无直接的实验证据。在W中,刃型<100>位错难以直接形成,其必然通过位错反应间接生成。其中一种可能性是用于辐照的W中本身存在具有<100>位错分量的混合型位错,在H原子进入W基体后发生了位错反应,生成<100>刃型位错。另一种可能是H与W中空位结合生成的V-H n 团簇诱发位错的生成,即H2分子产生内部应力导致各部分晶体收缩不均形成位错,或是过饱和空位团导致晶体塌陷形成位错环。对于初始<100>刃型位错是通过上述的其中一种机制形成,或是由2种机制共同作用形成,仍需要进一步的验证。因此,未来的研究工作需要通过进一步确认氢泡形核与位错类型的关联,探究初始<100>刃型位错的形成机理,从而完整地揭示气泡的初始形核机理。由于表面气泡的形核和长大过程以及气泡周围产生的位错(环)等缺陷,都将会对W的服役性能产生直接影响,因此有必要对表面气泡的形核机理开展更深入的研究,其将对抑制起泡行为,提升W的服役性能从而延长使用寿命起到指导作用。
由于等离子体辐照造成的表面损伤层深度通常在几十纳米量级[64],传统的测量热导率的稳态方法很难实现表面热导率的测量[63]。瞬态热反射法(transient thermoreflectance,TTR)利用了温度和反射率之间的比例关系,可以通过激光强度分布推导样品损伤层的热导率。Qu等[65]在PSI-2设备上采用40 eV He等离子体辐照W,并用TTR法测量了超薄损伤层的热导率,结果表明,辐照后W的热导率下降了2个数量级。W损伤层热导率的下降是由空位、间隙原子、He团簇、氦泡和空穴等辐照缺陷的散射作用引起的。
根据热导率的计算公式,可以通过测量热扩散率间接反映热导率的变化[69]。瞬态光栅光谱学(TGS)能够以高时间分辨率(几秒)和高空间分辨率(约100 µm)测量微米级厚度表面层的热扩散率。其原理在于利用相干激光脉冲在样品表面形成瞬态光栅,通过分析衍射探测光束的振幅衰减,确定表面层的热扩散率。Reza等[70]采用该法测量了在50 eV D等离子体辐照下W的热扩散率变化,如图12[70]所示。结果表明,辐照后W的热扩散率显著下降。这可能是因为D等离子体辐照在W表面产生的气泡不仅会减少表面和基体之间的热接触,减小了传热截面,还会使电子的平均自由程大大缩短,导致热传导过程中产生强烈的电子-电子相互作用[63],从而降低热扩散率。
Fig.12
Thermal diffusivity versus irradiation dose and temperature for four samples (Thermal diffusivity of unexposed W > 6.5 × 10-5 m2/s; HT—high temperature; LT—low temperature; HD—high dose sample; LD—low dose; LT: about 450 K; HT: about 650 K; LD: about 5 × 1025 m-2 (70 s); HD: about 1 × 1027 m-2 (1400 s))[70]
Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315 K
We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.
DubinkoA V, TerentyevD A, ZhurkinE E.
Study of the microstructure induced by high-flux plasma via transmission electron microscopy
The interplay between hydrogen and nanovoids, despite long being recognized as a central factor in hydrogen-induced damage in structural materials, remains poorly understood. Here, focusing on tungsten as a model body-centred cubic system, we explicitly demonstrate sequential adsorption of hydrogen adatoms on Wigner-Seitz squares of nanovoids with distinct energy levels. Interaction between hydrogen adatoms on nanovoid surfaces is shown to be dominated by pairwise power-law repulsion. We establish a predictive model for quantitative determination of the configurations and energetics of hydrogen adatoms in nanovoids. This model, combined with the equation of states of hydrogen gas, enables the prediction of hydrogen molecule formation in nanovoids. Multiscale simulations, performed based on our model, show good agreement with recent thermal desorption experiments. This work clarifies fundamental physics and provides a full-scale predictive model for hydrogen trapping and bubbling in nanovoids, offering long-sought mechanistic insights that are crucial for understanding hydrogen-induced damage in structural materials.
KolasinskiR D, ShimadaM, OyaY, et al.
A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten
In this work, the microstructure evolution in the near-surface of tungsten under hydrogen (H) plasma exposure conditions was observed by means of scanning electron microscopy (SEM), plasma focused ion beam (FIB) and transmission electron microscopy (TEM) techniques. Blisters, with existing dislocations distributed around obviously, were observed beneath the tungsten surface when the exposure temperature was 573 K, which was rarely reported in previous studies. However, H bombardment at 1273 K did not lead to the formation of blister-like microstructures. Correspondingly, irradiation hardening occurred after low temperature exposure, but not after high temperature exposure, according to the Berkovich nano-indentation experiments. In order to characterize the indentation size effect and irradiation hardening behavior of plasma-exposed materials, a mechanistic model was proposed for the hardness-depth relationship. A good agreement between the experimental indentation data and theoretical results revealed that plasma-induced dislocations play a dominant role in determining the increase of hardness for H plasma-exposed tungsten. (C) 2019 Published by Elsevier B.V.
LiuY L, ZhangY, ZhouH B, et al.
Vacancy trapping mechanism for hydrogen bubble formation in metal
\n Hydrogen is important for energy applications such as fuel cells but tends to diffuse into materials and make them more susceptible to fracture. Chen\n et al.\n tackled the challenge of identifying the exact location of hydrogen atoms in two common steels. The light weight and high mobility of hydrogen creates serious problems with conventional techniques. The authors used cryo-transfer atom probe tomography to show that hydrogen is pinned to various interfaces in the steels. This direct look into hydrogen trapping should help with the development of materials that are more resistant to hydrogen embrittlement.\n
TerentyevD, DubinkoV, BakaevA, et al.
Dislocations mediate hydrogen retention in tungsten
An ac technique for measuring the thermal conductivity of dielectric solids between 30 and 750 K is described. This technique, the 3ω method, can be applied to bulk amorphous solids and crystals as well as amorphous films tens of microns thick. Errors from black-body radiation are calculated to be less than 2% even at 1000 K. Data for a-SiO2, Pyrex 7740, and Pyroceram 9606 are compared to results obtained by conventional techniques.
CuiS, SimmondsM, QinW J, et al.
Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method
Tungsten is considered as one of the most promising materials for nuclear fusion reactor chamber applications. Wire + Arc Additive Manufacture has already demonstrated the ability to deposit defect-free large-scale tungsten structures, with considerable deposition rates. In this study, the microstructure of the as-deposited and heat-treated material has been characterized; it featured mainly large elongated grains for both conditions. The heat treatment at 1273 K for 6 h had a negligible effect on microstructure and on thermal diffusivity. Furthermore, the linear coefficient of thermal expansion was in the range of 4.5 x 10(-6) mu m m(-1) K-1 to 6.8 x 10(-6) mu m m(-1) K-1; the density of the deposit was as high as 99.4% of the theoretical tungsten density; the thermal diffusivity and the thermal conductivity were measured and calculated, respectively, and seen to decrease considerably in the temperature range between 300 K and 1300 K, for both testing conditions. These results showed that Wire + Arc Additive Manufacture can be considered as a suitable technology for the production of tungsten components for the nuclear sector. (C) 2019 Elsevier B.V.
RezaA, ZayachukY, YuH B, et al.
Transient grating spectroscopy of thermal diffusivity degradation in deuterium implanted tungsten
For very shallow indentations in W, Al, Au, and Fe-3wt%Si single crystals, hardness decreased with increasing depth irrespective of increasing or decreasing strain gradients. As such, strain gradient theory appears insufficient to explain the indentation size effect (ISE) at depths less than several hundred nanometers. Present research links the ISE to a ratio between the energy of newly created surface and plastic strain energy dissipation. Also, the contact surface to plastic volume ratio was nearly constant for a range of shallow depths. Based on the above, an analytical model of hardness versus depth provides a satisfactory fit to the experimental data and correlates well with embedded atom simulations.
NixW D, GaoH J.
Indentation size effects in crystalline materials: A law for strain gradient plasticity
Mechanisms of retention and blistering in near-surface region of tungsten exposed to high flux deuterium plasmas of tens of eV
0
2007
High-dome blisters formed by deuterium-induced local superplasticity
1
2008
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Blister formation on tungsten damaged by high energy particle irradiation
... [16]Surface (a, c, e) and crosss-ection (b, d, f) morphologies of surface blistering of D plasma exposed W with surface normal directions close to [111] (a, b), [110] (c, d), and [001] (e, f) directions, respectively[16] (Red arrows in Fig.1d show two blisters caused by the gas pressure inside the cavities beneath the surface; A blue arrow in Fig.1d shows a large cavity along the grain boundary; Blue arrows in Fig.1f show that there were also cavities beneath the surface, but these cavities did not induce any obvious blisters on the surface at all)Fig.1
... [16] (Red arrows in Fig.1d show two blisters caused by the gas pressure inside the cavities beneath the surface; A blue arrow in Fig.1d shows a large cavity along the grain boundary; Blue arrows in Fig.1f show that there were also cavities beneath the surface, but these cavities did not induce any obvious blisters on the surface at all)Fig.1
... [16]Surface blistering morphologies of surface bubbles on [111] planeswith different grain orientations (a-c)[16] (The specific grain orientations are marked in the [110] direction)Fig.3
基于塑性变形机制的表面起泡模型[16]
Surface blistering model based on plastic deformation mechanism[16]Fig.4
表面纳米泡也属于等离子体辐照后W表面起泡现象,并且同样具有取向依赖性.徐海燕[27]在低能高束流 D 辐照W表面观察到了形成的纳米泡,如图5[27]所示.按照组织的形貌,纳米泡包括三角形组织、条带状组织和海绵组织.纳米泡在近{111}取向晶粒内为三角形,在近{001}取向晶粒内为海绵状,其余取向为条带状,具有显著的取向依赖性. ...
... [16] (The specific grain orientations are marked in the [110] direction)Fig.3
基于塑性变形机制的表面起泡模型[16]
Surface blistering model based on plastic deformation mechanism[16]Fig.4
表面纳米泡也属于等离子体辐照后W表面起泡现象,并且同样具有取向依赖性.徐海燕[27]在低能高束流 D 辐照W表面观察到了形成的纳米泡,如图5[27]所示.按照组织的形貌,纳米泡包括三角形组织、条带状组织和海绵组织.纳米泡在近{111}取向晶粒内为三角形,在近{001}取向晶粒内为海绵状,其余取向为条带状,具有显著的取向依赖性. ...
... [16]Surface blistering model based on plastic deformation mechanism[16]Fig.4
表面纳米泡也属于等离子体辐照后W表面起泡现象,并且同样具有取向依赖性.徐海燕[27]在低能高束流 D 辐照W表面观察到了形成的纳米泡,如图5[27]所示.按照组织的形貌,纳米泡包括三角形组织、条带状组织和海绵组织.纳米泡在近{111}取向晶粒内为三角形,在近{001}取向晶粒内为海绵状,其余取向为条带状,具有显著的取向依赖性. ...
... [16]Fig.4
表面纳米泡也属于等离子体辐照后W表面起泡现象,并且同样具有取向依赖性.徐海燕[27]在低能高束流 D 辐照W表面观察到了形成的纳米泡,如图5[27]所示.按照组织的形貌,纳米泡包括三角形组织、条带状组织和海绵组织.纳米泡在近{111}取向晶粒内为三角形,在近{001}取向晶粒内为海绵状,其余取向为条带状,具有显著的取向依赖性. ...
... [21]Surface morphologies of W samples exposed to D plasma (943 K) at irradiation doses of 1.55 × 1026 m-2 (a), 4.21 × 1026 m-2 (b), and 7.05 × 1026 m-2 (c); and surface bubble size and density distribution statistics (d)[21]Fig.2
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38?eV at 315 K
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
... [24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Surface modification on tungsten exposed to low energy high flux deuterium plasmas
4
2013
... 表面纳米泡也属于等离子体辐照后W表面起泡现象,并且同样具有取向依赖性.徐海燕[27]在低能高束流 D 辐照W表面观察到了形成的纳米泡,如图5[27]所示.按照组织的形貌,纳米泡包括三角形组织、条带状组织和海绵组织.纳米泡在近{111}取向晶粒内为三角形,在近{001}取向晶粒内为海绵状,其余取向为条带状,具有显著的取向依赖性. ...
... [27]Surface bubbles and nanobubbles of W after D plasma irradiation (38 eV, 1024 m-2·s-1, 423 K, 7 × 1026 m-2)[27] (a, b) surface bubbles viewed vertically (a) and tilted at 45° (b) (c, d) nanobubbles in SEM conventional mode (c) and Inlens mode (d) (Arrows in Fig.5d show the morphologies of broken nanobubbles)Fig.5
... [27] (a, b) surface bubbles viewed vertically (a) and tilted at 45° (b) (c, d) nanobubbles in SEM conventional mode (c) and Inlens mode (d) (Arrows in Fig.5d show the morphologies of broken nanobubbles)Fig.5
... 表面纳米泡也属于等离子体辐照后W表面起泡现象,并且同样具有取向依赖性.徐海燕[27]在低能高束流 D 辐照W表面观察到了形成的纳米泡,如图5[27]所示.按照组织的形貌,纳米泡包括三角形组织、条带状组织和海绵组织.纳米泡在近{111}取向晶粒内为三角形,在近{001}取向晶粒内为海绵状,其余取向为条带状,具有显著的取向依赖性. ...
... [27]Surface bubbles and nanobubbles of W after D plasma irradiation (38 eV, 1024 m-2·s-1, 423 K, 7 × 1026 m-2)[27] (a, b) surface bubbles viewed vertically (a) and tilted at 45° (b) (c, d) nanobubbles in SEM conventional mode (c) and Inlens mode (d) (Arrows in Fig.5d show the morphologies of broken nanobubbles)Fig.5
... [27] (a, b) surface bubbles viewed vertically (a) and tilted at 45° (b) (c, d) nanobubbles in SEM conventional mode (c) and Inlens mode (d) (Arrows in Fig.5d show the morphologies of broken nanobubbles)Fig.5
... [41]Typical morphologies of dislocations loops distributed around the blister in recrystallized W after exposed to H plasma[41]
(a) four dislocation loop arrays distributed near the intra-granular H blister ...
... [41]
(a) four dislocation loop arrays distributed near the intra-granular H blister ...
... (b) enlarge area 1 in Fig.8a, prismatic dislocation loops and “coffee-bean” loops distributed along [11] direction (Rectangularareas show the same group dislocations which observed under different g vector)Fig.8
H等离子体辐照再结晶W中晶内气泡尖端的剪切位错环形貌[41]
Morphologies of shear dislocation loops arrayed at the tip of the intra-granular blisters in recrystallized W after exposed to H plasma (Rectangular areas show the same group dislocations which observed under different g vector) [41]
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Vacancy trapping mechanism for hydrogen bubble formation in metal
3
2009
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
... [45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
... ,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Hydrogen bubble nucleation in α-iron
1
2017
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Effect of plastic deformation on deuterium retention and release in tungsten
2
2015
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma
2
2007
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
... ,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Formation of superabundant vacancies in Pd hydride under high hydrogen pressures
1
1994
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Formation of superabundant vacancies in Pd-H alloys
0
2000
Formation of superabundant vacancies in M-H alloys and some of its consequences: A review
0
2003
Hydrogen-induced superabundant vacancy formation by electrochemical methods in bcc Fe: Monte Carlo simulation
1
2017
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
The role of impurity oxygen in hydrogen bubble nucleation in tungsten
1
2013
... 晶内气泡的形核位置通常为晶粒内部的空位、空位团簇[45,46]和位错[26,47]等缺陷处,因此主要观点为空位形核理论和位错形核理论.关于空位形核理论,Liu等[45]提出,空位的自由表面可与H原子结合,引起H的聚集从而导致气泡形成.然而,H/D致起泡现象也多次被观察到出现在低能高束流H/D等离子体辐照后的再结晶W表面晶粒内部[14,24,44,45,48].但是再结晶材料内的初始空位浓度很低,且当H/D等离子体的入射能量低于W的离位阈值时,基本不会产生新的空位型缺陷,因此无法为气泡形核提供足够的空位.Fukai等[49~52]提出,由于已有空位与H形成复合体(V-H n complex),新空位的形成能降低,并以此解释在高压氢环境下bcc金属生成过饱和空位现象.基于这一理论,Shu等[24,48]提出将再结晶W中的起泡行为和氘滞留归因于空位形核机制.然而,研究[53]表明,通过形成V-H n 复合体只能使新空位的形成能降低至2.45 eV,该数值仍然很高,所以空位浓度依然会非常低(室温时为10-39),不足以支持空位形核机制产生晶内气泡的观点.此外,空位或V-H n 复合体在室温下通常为不可动状态,但是很多研究[23,24]在室温辐照条件下也观察到了氢致起泡现象.因此,空位形核理论并不能完全解释气泡的形核. ...
Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates
... [59]TEM morphologies of intra-granular blisters of recrystallized tungsten, H blisters respectively located in(100) plane (area 1) (a), (001) plane (area 2) (b), and (010) plane (area 3) (c); the locations of areas 1-3 in W near-surface (d)[59]Fig.10
氢泡在<100>刃型位错处的形核过程[59]
H blister nucleation process at <100> edge dislocation[59]
(a) time t = 1 ns, the edge dislocation with a <100> Burgers vector is not filled by H atoms (The inset enlarged figure shows the dislocation core structure) ...
... [59]Fig.10
氢泡在<100>刃型位错处的形核过程[59]
H blister nucleation process at <100> edge dislocation[59]
(a) time t = 1 ns, the edge dislocation with a <100> Burgers vector is not filled by H atoms (The inset enlarged figure shows the dislocation core structure) ...
... [59]H blister nucleation process at <100> edge dislocation[59]
(a) time t = 1 ns, the edge dislocation with a <100> Burgers vector is not filled by H atoms (The inset enlarged figure shows the dislocation core structure) ...
... [59]
(a) time t = 1 ns, the edge dislocation with a <100> Burgers vector is not filled by H atoms (The inset enlarged figure shows the dislocation core structure) ...
... 表面起泡行为作为H/D等离子体辐照下W表面产生的最主要损伤行为,Chen等[59]提出的气泡的{100}面形核机制是目前较为接近氢泡最早形核时的状态,但是对于最初<100>刃型位错是如何生成的,尚无直接的实验证据.在W中,刃型<100>位错难以直接形成,其必然通过位错反应间接生成.其中一种可能性是用于辐照的W中本身存在具有<100>位错分量的混合型位错,在H原子进入W基体后发生了位错反应,生成<100>刃型位错.另一种可能是H与W中空位结合生成的V-H n 团簇诱发位错的生成,即H2分子产生内部应力导致各部分晶体收缩不均形成位错,或是过饱和空位团导致晶体塌陷形成位错环.对于初始<100>刃型位错是通过上述的其中一种机制形成,或是由2种机制共同作用形成,仍需要进一步的验证.因此,未来的研究工作需要通过进一步确认氢泡形核与位错类型的关联,探究初始<100>刃型位错的形成机理,从而完整地揭示气泡的初始形核机理.由于表面气泡的形核和长大过程以及气泡周围产生的位错(环)等缺陷,都将会对W的服役性能产生直接影响,因此有必要对表面气泡的形核机理开展更深入的研究,其将对抑制起泡行为,提升W的服役性能从而延长使用寿命起到指导作用. ...
Baseline high heat flux and plasma facing materials for fusion
... [70]Thermal diffusivity versus irradiation dose and temperature for four samples (Thermal diffusivity of unexposed W > 6.5 × 10-5 m2/s; HT—high temperature; LT—low temperature; HD—high dose sample; LD—low dose; LT: about 450 K; HT: about 650 K; LD: about 5 × 1025 m-2 (70 s); HD: about 1 × 1027 m-2 (1400 s))[70]Fig.12