|
|
W含量对Ti-42Al-5Mn-xW合金相转变行为的影响 |
李小兵1, 潜坤1, 舒磊1, 张孟殊1, 张金虎2, 陈波1( ), 刘奎1 |
1.季华实验室 材料科学与技术研究部 佛山 528200 2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy |
LI Xiaobing1, QIAN Kun1, SHU Lei1, ZHANG Mengshu1, ZHANG Jinhu2, CHEN Bo1( ), LIU Kui1 |
1.Department of Materials Science and Technology Research, Ji Hua Laboratory, Foshan 528200, China 2.Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
Xiaobing LI,
Kun QIAN,
Lei SHU,
Mengshu ZHANG,
Jinhu ZHANG,
Bo CHEN,
Kui LIU.
Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. Acta Metall Sin, 2023, 59(10): 1401-1410.
1 |
Qu C F. Research and development of intermetallic titanium aluminides [J]. Rare Met. Mater. Eng., 1991, 20: 19
|
1 |
屈翠芬. 钛铝系金属间化合物的研究与发展 [J]. 稀有金属材料与工程, 1991, 20: 19
|
2 |
Qin G W, Hao S M. Ti-Al system intermetallic compounds [J]. Rare Met. Mater. Eng., 1995, 24(2): 1
|
2 |
秦高梧, 郝士明. Ti-Al系金属间化合物 [J]. 稀有金属材料与工程, 1995, 24(2): 1
|
3 |
Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709
pmid: 27443900
|
4 |
Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat. Mater., 2016, 15: 876
doi: 10.1038/nmat4677
pmid: 27322822
|
5 |
Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? [J]. Intermetallics, 2006, 14: 1123
doi: 10.1016/j.intermet.2006.01.064
|
6 |
Clemens H, Chladil H F, Wallgram W, et al. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy [J]. Intermetallics, 2008, 16: 827
doi: 10.1016/j.intermet.2008.03.008
|
7 |
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
|
7 |
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
|
8 |
Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future [J] JOM, 2018, 70: 553
doi: 10.1007/s11837-018-2747-x
|
9 |
Tetsui T, Shindo K, Kobayashi S, et al. A newly developed hot worked TiAl alloy for blades and structural components [J]. Scr. Mater., 2002, 47: 399
doi: 10.1016/S1359-6462(02)00158-6
|
10 |
Zhao P X, Li X B, Tang H J, et al. Improved high-temperature oxidation properties for Mn-containing beta-gamma TiAl with W addition [J]. Oxid. Met., 2020, 93: 433
doi: 10.1007/s11085-020-09964-9
|
11 |
Tang H J, Li X B, Ma Y C, et al. Multistep evolution of βo phase during isothermal annealing of Ti-42Al-5Mn alloy: Formation of Laves phase [J]. Intermetallics, 2020, 126: 106932
doi: 10.1016/j.intermet.2020.106932
|
12 |
Li X B, Tang H J, Xing W W, et al. Microstructural stability, phase evolution and mechanical properties of a forged W-modified high-Mn β-γ-TiAl alloy [J]. Intermetallics, 2021, 136: 107230
doi: 10.1016/j.intermet.2021.107230
|
13 |
Li X B, Zhao P X, Chen B, et al. Effect of W addition on the solidification microstructure and element distribution behavior in Ti-42Al-5Mn alloy [J]. Rare Met. Mater. Eng., 2022, 51: 3850
|
13 |
李小兵, 赵鹏翔, 陈 波 等. W添加对Ti-42Al-5Mn合金凝固组织和元素分布行为的影响 [J]. 稀有金属材料与工程, 2022, 51: 3850
|
14 |
Xu H, Li X B, Xing W W, et al. Solidification pathway and phase transformation behavior in a beta-solidified gamma-TiAl based alloy [J]. J. Mater. Sci. Technol., 2019, 35: 2652
doi: 10.1016/j.jmst.2019.05.061
|
15 |
Yang H W, Lin C. Phase transformation and microstructural evolution in Ti-44Al-4Nb-4Zr alloy during heat treatment [J]. Metall. Mater. Trans., 2006, 37A: 3191
|
16 |
Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy [J]. Intermetallics, 2014, 44: 128
doi: 10.1016/j.intermet.2013.09.010
|
17 |
Mayer S, Petersmann M, Fischer F D, et al. Experimental and theoretical evidence of displacive martensite in an intermetallic Mo-containing γ-TiAl based alloy [J]. Acta Mater., 2016, 115: 242
doi: 10.1016/j.actamat.2016.06.006
|
18 |
Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability [J]. Adv. Eng. Mater., 2008, 10: 707
doi: 10.1002/adem.v10:8
|
19 |
Chen R R, Fang H Z, Chen X Y, et al. Formation of TiC/Ti2AlC and α2 + γ in in-situ TiAl composites with different solidification paths [J]. Intermetallics, 2017, 81: 9
doi: 10.1016/j.intermet.2017.02.025
|
20 |
Sun F S, Cao C X, Yan M G, et al. Alloying mechanism of beta stabilizers in a TiAl alloy [J]. Metall. Mater. Trans., 2001, 32A: 1573
|
21 |
Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 777
|
21 |
张永刚, 韩雅芳, 陈国良 等. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 777
|
22 |
Schmoelzer T, Mayer S, Sailer C, et al. In situ diffraction experiments for the investigation of phase fractions and ordering temperatures in Ti-44at%Al-(3-7)at%Mo alloys [J]. Adv. Eng. Mater., 2011, 13: 306
doi: 10.1002/adem.v13.4
|
23 |
Xu M, Zhang S Z, Zhao Y, et al. Effects of alloying element on the heat-treated microstructure based on β/γ TiAl [J]. Rare Met. Mater. Eng., 2019, 48(1): 183
|
23 |
徐 萌, 张树志, 赵 宇 等. 合金元素对β-γ TiAl合金热处理组织的影响 [J]. 稀有金属材料与工程, 2019, 48(1): 183
|
24 |
Yu T H, Koo C H. Microstructural evolution of a hot-rolled Ti-40Al-10Nb alloy [J]. Mater. Sci. Eng., 1997, A239-240: 694
|
25 |
Stark A, Oehring M, Pyczak F, et al. In situ observation of various phase transformation paths in Nb-rich TiAl alloys during quenching with different rates [J]. Adv. Eng. Mater., 2011, 13: 700
doi: 10.1002/adem.v13.8
|
26 |
Schloffer M, Rashkova B, Schöberl T, et al. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness [J]. Acta Mater., 2014, 64: 241
doi: 10.1016/j.actamat.2013.10.036
|
27 |
Tang H J, Xing W W, Li X B, et al. Insights into the gradient-characteristic precipitation behaviors of Laves phase induced by Fe/W/Mo addition in Ti42Al5Mn alloy [J]. Intermetallics, 2021, 128: 107022
doi: 10.1016/j.intermet.2020.107022
|
28 |
Takeyama M, Kobayashi S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations [J]. Intermetallics, 2005, 13: 993
doi: 10.1016/j.intermet.2004.12.014
|
29 |
Singh V, Mondal C, Sarkar R, et al. Effects of Cr alloying on the evolution of solidification microstructure and phase transformations of high-Nb containing γ-TiAl based alloys [J]. Intermetallics, 2021, 131: 107117
doi: 10.1016/j.intermet.2021.107117
|
30 |
Chen G, Chen F R, Qi Z X, et al. PST TiAl single crystal and its application prospect [J]. J. Vib. Meas. Diag., 2019, 39: 915
|
30 |
陈 光, 陈奉锐, 祁志祥 等. 聚片孪生TiAl单晶及其应用展望 [J]. 振动、测试与诊断, 2019, 39: 915
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|