Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1401-1410    DOI: 10.11900/0412.1961.2022.00119
  研究论文 本期目录 | 过刊浏览 |
W含量对Ti-42Al-5Mn-xW合金相转变行为的影响
李小兵1, 潜坤1, 舒磊1, 张孟殊1, 张金虎2, 陈波1(), 刘奎1
1.季华实验室 材料科学与技术研究部 佛山 528200
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy
LI Xiaobing1, QIAN Kun1, SHU Lei1, ZHANG Mengshu1, ZHANG Jinhu2, CHEN Bo1(), LIU Kui1
1.Department of Materials Science and Technology Research, Ji Hua Laboratory, Foshan 528200, China
2.Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
Xiaobing LI, Kun QIAN, Lei SHU, Mengshu ZHANG, Jinhu ZHANG, Bo CHEN, Kui LIU. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. Acta Metall Sin, 2023, 59(10): 1401-1410.

全文: PDF(3894 KB)   HTML
摘要: 

以低成本、易变形的Ti-42Al-5Mn合金(原子分数,%)为研究对象,利用DSC、EPMA、EBSD及Pandat热力学计算软件系统研究了W含量(0.5%~1.0%)对合金相变行为和组织的影响。结果表明,随着W含量由0.5%提高至1.0%,合金β单相区开始温度(Tβ )和γ相溶解温度(Tγ-solv)几乎未发生变化,而共析转变温度(Teut)稍有增加。W添加会在一定程度上影响合金固态相变路线,随着W含量增加至0.5%,合金近服役温度下的平衡相由α2 + γ + Laves逐渐演变为βo + α2 + γ + Laves。W添加会对合金片层组织特征产生显著影响。在(γ + α + β)三相区处理时,随着W含量的提高,合金缓冷后组织中片层含量显著降低,当W含量为0.8%和1.0%时,合金组织以γ晶粒和βo相为主,几乎消除了α2/γ层片组织。在(α + β)两相区处理时,合金缓冷后均为近片层组织,且随着W含量由0.5%提高至1.0%,片层组织晶团得到明显细化。

关键词 TiAl合金W含量相变片层组织晶粒细化    
Abstract

Advanced intermetallic β-solidifying γ-TiAl-based alloys have various potential applications in the aerospace and automobile industries due to their low density, functionality at higher temperatures, and high specific strength/modulus. The crucial aspect that needs to be considered when developing a new β-solidifying γ-TiAl alloy is to clarify the influence law of β-stabilizer elements on the phase transformation behavior of γ-TiAl alloys. In this work, the impact of W contents (0.5%-1.0%, atomic fraction) on the phase transformation behavior and microstructure characteristics of Ti-42Al-5Mn-xW (atomic fraction) alloy with low cost and superior temperature workability was systematically investigated. The findings demonstrate that there were minor changes in the β-phase single region temperature (Tβ ) and γ phase solvus temperature (Tγ-solv); furthermore, the eutectoid reaction temperature (Teut) increases with the W content from 0.5% to 1.0%. Addition of W influences the solid phase transformation pathway to a certain extent. When the concentration of W increases to 0.5%, the equilibrium phase of the alloy at near service temperature gradually changes from α2 + γ + Laves to βo + α2 + γ + Laves. Additionally, W addition will also have a substantial effect on the lamellar microstructure. The volume fraction of lamellar microstructure considerably decreased after alloying with (0.5%-1.0%)W for Ti-42Al-5Mn alloy when being treated in the (γ + α + β) triple-phase region followed by furnace cooling. Increasing the W content to 0.8% and 1.0% results in the development of γ and βo grain phases with almost complete removal of α2/γ lamellar structures. However, the W-free and W-bearing Ti-42Al-5Mn alloys show near complete lamellar structures when treated in (α + β) two-phase region followed by furnace cooling. Furthermore, when the content of W increased from 0.5% to 1.0%, an equiaxed grain structure with refined lamellar colonies is typically obtained.

Key wordsTiAl alloy    W content    phase transformation    lamellar structure    grain refinement
收稿日期: 2022-03-15     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金项目(51971215);季华实验室科研项目(X210291TL210)
通讯作者: 陈 波,chenbo@jihualab.ac.cn,主要从事轻质高强TiAl合金材料研究
Corresponding author: CHEN Bo, professor, Tel: 13066683332, E-mail: chenbo@jihualab.ac.cn
作者简介: 李小兵,男,1988年生,研究员,博士
xAlMnWTi
041.624.87-Bal.
0.541.814.710.49Bal.
0.841.544.900.78Bal.
1.041.724.770.98Bal.
表1  Ti-42Al-5Mn-xW合金的化学成分 (atomic fraction / %)
图1  Ti-42Al-5Mn-xW (x = 0.5和1.0)合金的DSC加热曲线
图2  Ti-42Al-5Mn-0.5W合金不同温度保温1 h水淬后的BSE像
图3  W含量对Ti-42Al-5Mn-xW合金特征相变温度的影响
图4  Ti-42Al-5Mn-xW合金1200℃处理1 h后以不同方式冷却的BSE像
xWCACFC
α2/γ regionγgβoα2/γ regionγgβoα2/γ regionγgβo
087.4 ± 0.23.8 ± 0.18.9 ± 0.274.5 ± 0.914.6 ± 0.910.9 ± 0.869.2 ± 0.424.8 ± 0.56.1 ± 0.6
0.563.3 ± 0.713.9 ± 0.522.8 ± 0.954.3 ± 1.119.2 ± 0.426.5 ± 1.723.9 ± 0.359.8 ± 0.516.3 ± 0.6
0.854.8 ± 0.815.5 ± 0.829.7 ± 0.741.5 ± 1.124.6 ± 1.133.9 ± 1.115.9 ± 0.462.6 ± 0.521.5 ± 0.9
1.058.4 ± 0.69.5 ± 0.732.1 ± 0.456.9 ± 1.113.1 ± 0.630.0 ± 0.918.1 ± 0.560.2 ± 0.921.7 ± 1.3
表2  Ti-42Al-5Mn-xW合金1200℃处理1 h后不同冷却方式下的显微组织定量统计结果 (volume fraction / %)
图5  Ti-42Al-5Mn-xW合金1300℃处理1 h后以不同方式冷却的BSE像
xWCACFC
α2βoα2βo + γp regionα2/γ regionγgβo
076.1 ± 0.323.9 ± 0.383.4 ± 0.316.6 ± 0.371.3 ± 0.420.5 ± 0.38.2 ± 0.2
0.560.1 ± 0.539.9 ± 0.564.6 ± 0.535.4 ± 0.555.0 ± 1.529.5 ± 2.515.5 ± 0.5
0.849.2 ± 1.050.8 ± 1.077.5 ± 0.622.5 ± 0.639.0 ± 0.541.8 ± 0.419.2 ± 0.3
1.036.8 ± 0.463.2 ± 0.480.8 ± 1.119.2 ± 1.145.8 ± 0.531.5 ± 0.722.7 ± 0.9
表3  Ti-42Al-5Mn-xW合金1300℃处理1 h后不同冷却方式下的显微组织定量统计结果 (volume fraction / %)
图6  Ti-42Al-5Mn-xW (x = 0~2)相图计算结果
图7  Ti-42Al-5Mn-0.5W合金800℃保温720 h后的显微组织
PhaseTiAlMnW
γ52.30 ± 0.6244.43 ± 1.313.02 ± 0.180.31 ± 0.37
βo55.36 ± 0.1332.03 ± 0.5410.64 ± 0.302.16 ± 0.15
α260.23 ± 0.3433.82 ± 0.425.13 ± 1.230.89 ± 0.71
Laves40.91 ± 1.2630.00 ± 0.5128.52 ± 1.830.51 ± 0.18
表4  Ti-42Al-5Mn-0.5W经800℃处理720 h后原βo微区不同相EDS化学成分分析结果 (atomic fraction / %)
1 Qu C F. Research and development of intermetallic titanium aluminides [J]. Rare Met. Mater. Eng., 1991, 20: 19
1 屈翠芬. 钛铝系金属间化合物的研究与发展 [J]. 稀有金属材料与工程, 1991, 20: 19
2 Qin G W, Hao S M. Ti-Al system intermetallic compounds [J]. Rare Met. Mater. Eng., 1995, 24(2): 1
2 秦高梧, 郝士明. Ti-Al系金属间化合物 [J]. 稀有金属材料与工程, 1995, 24(2): 1
3 Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709 pmid: 27443900
4 Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nat. Mater., 2016, 15: 876
doi: 10.1038/nmat4677 pmid: 27322822
5 Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? [J]. Intermetallics, 2006, 14: 1123
doi: 10.1016/j.intermet.2006.01.064
6 Clemens H, Chladil H F, Wallgram W, et al. In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy [J]. Intermetallics, 2008, 16: 827
doi: 10.1016/j.intermet.2008.03.008
7 Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
7 杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
8 Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future [J] JOM, 2018, 70: 553
doi: 10.1007/s11837-018-2747-x
9 Tetsui T, Shindo K, Kobayashi S, et al. A newly developed hot worked TiAl alloy for blades and structural components [J]. Scr. Mater., 2002, 47: 399
doi: 10.1016/S1359-6462(02)00158-6
10 Zhao P X, Li X B, Tang H J, et al. Improved high-temperature oxidation properties for Mn-containing beta-gamma TiAl with W addition [J]. Oxid. Met., 2020, 93: 433
doi: 10.1007/s11085-020-09964-9
11 Tang H J, Li X B, Ma Y C, et al. Multistep evolution of βo phase during isothermal annealing of Ti-42Al-5Mn alloy: Formation of Laves phase [J]. Intermetallics, 2020, 126: 106932
doi: 10.1016/j.intermet.2020.106932
12 Li X B, Tang H J, Xing W W, et al. Microstructural stability, phase evolution and mechanical properties of a forged W-modified high-Mn β-γ-TiAl alloy [J]. Intermetallics, 2021, 136: 107230
doi: 10.1016/j.intermet.2021.107230
13 Li X B, Zhao P X, Chen B, et al. Effect of W addition on the solidification microstructure and element distribution behavior in Ti-42Al-5Mn alloy [J]. Rare Met. Mater. Eng., 2022, 51: 3850
13 李小兵, 赵鹏翔, 陈 波 等. W添加对Ti-42Al-5Mn合金凝固组织和元素分布行为的影响 [J]. 稀有金属材料与工程, 2022, 51: 3850
14 Xu H, Li X B, Xing W W, et al. Solidification pathway and phase transformation behavior in a beta-solidified gamma-TiAl based alloy [J]. J. Mater. Sci. Technol., 2019, 35: 2652
doi: 10.1016/j.jmst.2019.05.061
15 Yang H W, Lin C. Phase transformation and microstructural evolution in Ti-44Al-4Nb-4Zr alloy during heat treatment [J]. Metall. Mater. Trans., 2006, 37A: 3191
16 Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy [J]. Intermetallics, 2014, 44: 128
doi: 10.1016/j.intermet.2013.09.010
17 Mayer S, Petersmann M, Fischer F D, et al. Experimental and theoretical evidence of displacive martensite in an intermetallic Mo-containing γ-TiAl based alloy [J]. Acta Mater., 2016, 115: 242
doi: 10.1016/j.actamat.2016.06.006
18 Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability [J]. Adv. Eng. Mater., 2008, 10: 707
doi: 10.1002/adem.v10:8
19 Chen R R, Fang H Z, Chen X Y, et al. Formation of TiC/Ti2AlC and α2 + γ in in-situ TiAl composites with different solidification paths [J]. Intermetallics, 2017, 81: 9
doi: 10.1016/j.intermet.2017.02.025
20 Sun F S, Cao C X, Yan M G, et al. Alloying mechanism of beta stabilizers in a TiAl alloy [J]. Metall. Mater. Trans., 2001, 32A: 1573
21 Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 777
21 张永刚, 韩雅芳, 陈国良 等. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 777
22 Schmoelzer T, Mayer S, Sailer C, et al. In situ diffraction experiments for the investigation of phase fractions and ordering temperatures in Ti-44at%Al-(3-7)at%Mo alloys [J]. Adv. Eng. Mater., 2011, 13: 306
doi: 10.1002/adem.v13.4
23 Xu M, Zhang S Z, Zhao Y, et al. Effects of alloying element on the heat-treated microstructure based on β/γ TiAl [J]. Rare Met. Mater. Eng., 2019, 48(1): 183
23 徐 萌, 张树志, 赵 宇 等. 合金元素对β-γ TiAl合金热处理组织的影响 [J]. 稀有金属材料与工程, 2019, 48(1): 183
24 Yu T H, Koo C H. Microstructural evolution of a hot-rolled Ti-40Al-10Nb alloy [J]. Mater. Sci. Eng., 1997, A239-240: 694
25 Stark A, Oehring M, Pyczak F, et al. In situ observation of various phase transformation paths in Nb-rich TiAl alloys during quenching with different rates [J]. Adv. Eng. Mater., 2011, 13: 700
doi: 10.1002/adem.v13.8
26 Schloffer M, Rashkova B, Schöberl T, et al. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness [J]. Acta Mater., 2014, 64: 241
doi: 10.1016/j.actamat.2013.10.036
27 Tang H J, Xing W W, Li X B, et al. Insights into the gradient-characteristic precipitation behaviors of Laves phase induced by Fe/W/Mo addition in Ti42Al5Mn alloy [J]. Intermetallics, 2021, 128: 107022
doi: 10.1016/j.intermet.2020.107022
28 Takeyama M, Kobayashi S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations [J]. Intermetallics, 2005, 13: 993
doi: 10.1016/j.intermet.2004.12.014
29 Singh V, Mondal C, Sarkar R, et al. Effects of Cr alloying on the evolution of solidification microstructure and phase transformations of high-Nb containing γ-TiAl based alloys [J]. Intermetallics, 2021, 131: 107117
doi: 10.1016/j.intermet.2021.107117
30 Chen G, Chen F R, Qi Z X, et al. PST TiAl single crystal and its application prospect [J]. J. Vib. Meas. Diag., 2019, 39: 915
30 陈 光, 陈奉锐, 祁志祥 等. 聚片孪生TiAl单晶及其应用展望 [J]. 振动、测试与诊断, 2019, 39: 915
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[8] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[9] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[10] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[11] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[12] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[13] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[14] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[15] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.