Please wait a minute...
金属学报  2022, Vol. 58 Issue (3): 311-323    DOI: 10.11900/0412.1961.2021.00185
  综述 本期目录 | 过刊浏览 |
新一代马氏体耐热钢G115的研究进展
何焕生1, 余黎明1(), 刘晨曦1, 李会军1, 高秋志2, 刘永长1()
1.天津大学 材料科学与工程学院 水利安全与仿真国家重点实验室 天津 300354
2.东北大学秦皇岛分校 资源与材料学院 秦皇岛 066004
Research Progress of a Novel Martensitic Heat-Resistant Steel G115
HE Huansheng1, YU Liming1(), LIU Chenxi1, LI Huijun1, GAO Qiuzhi2, LIU Yongchang1()
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2.School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
引用本文:

何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
Huansheng HE, Liming YU, Chenxi LIU, Huijun LI, Qiuzhi GAO, Yongchang LIU. Research Progress of a Novel Martensitic Heat-Resistant Steel G115[J]. Acta Metall Sin, 2022, 58(3): 311-323.

全文: PDF(2554 KB)   HTML
摘要: 

提高火电机组中耐热锅炉的蒸汽温度和压力参数可以有效提升燃煤效率,减少有害气体排放。受煤炭资源紧缺和温室效应的双重影响,发展650℃及更高温度超超临界(ultra super-critical,USC)机组中的耐热锅炉材料已迫在眉睫。我国在600℃ USC机组用耐热材料P92钢基础上研发的马氏体耐热钢G115有望成为优选材料之一。本文介绍了G115钢的成分特点、形貌特征,综述了其在组织稳定性、蠕变性能、抗疲劳性能、抗蒸汽氧化性能以及工业管材制备等方面的研究进展,重点归纳了G115钢中富Cu相的作用,展望了未来研究重点,以期为更深入研究G115钢提供可行思路。

关键词 G115钢超超临界机组微观组织服役性能    
Abstract

Improving the steam temperature and the pressure of the boiler applied in the thermal power could enhance the coal-fired efficiency and reduce the emission of harmful gases. Due to the dual impact of dwindling fossil resources and an exacerbated global greenhouse effect, it is critical to develop new heat-resistant boiler materials for ultra super-critical (USC) units at temperatures of 650oC and higher. With great thermal conductivity, good fatigue resistance, and low cost, martensitic heat-resistant steel G115, based on P92 steel applied in 600oC USC units, is a promising steel to be applied to this among all candidate materials. This paper introduces the main chemical composition and the microstructure feature of G115 steel, and the research progress in the areas of microstructure stability, creep performance, fatigue resistance, steam oxidation resistance, and industrial pipe production are summarized, with a focus on the role of Cu-rich phase in G115 steel. Finally, some key points on G115 steel are proposed to provide ideas for future research.

Key wordsG115 steel    ultra super-critical (USC) units    microstructure    service performance
收稿日期: 2021-05-07     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(U1960204)
作者简介: 何焕生,男,1997年生,硕士生
SteelCCrWMoCoMnV
G1150.06-0.108.0-9.52.5-3.5-2.5-3.50.20-0.800.10-0.30
SAVE12AD0.08-0.138.5-9.52.0-3.5-1.0-3.50.20-0.700.15-0.30
MARBN0.0789.03.0-3.00.30.16
P920.07-0.148.5-9.01.5-2.00.30-0.60-0.30-0.600.15-0.25
SteelSiCuNbNBNiTa / Nd
G1150.10-0.500.80-1.200.03-0.070.006-0.0100.010-0.016≤ 0.03-
SAVE12AD0.3-0.060.0080.010--
MARBN0.05-0.50-0.03-0.080.005-0.0400.003-0.015≤ 0.500.003-0.06
P92≤ 0.50-0.04-0.090.030-0.0700.0010-0.0060≤ 0.40-
表1  P92、MARBN、SAVE12AD和G115钢化学成分[19,26,29] (mass fraction / %)
图1  G115钢回火马氏体和析出相形貌及分布示意图
图2  G115钢和P92钢650℃时效不同时间拉伸强度和板条马氏体/亚结构、析出相尺寸变化[42~46]
图3  G115钢回火态中富Cu相形貌和组成(a) high angle annular dark field (HAADF)-STEM image(b) bright field TEM image (Inset in Fig.3b shows the selected area electron diffraction (SAED) pattern of Cu-rich particle)(c) EDS element maps of Fig.3a (d, e) EDS results of Cu-rich particles before (d) and after (e) aging for 2000 h at 650oC
图4  高角环形暗场(HAADF)像下G115钢650℃等温时效1000 h 后Laves相和富Cu相分布位置
图5  G115钢750℃时效过程中Laves相与M23C6分布情况[52](a, b) SEM image (a) and TEM image and corresponding EDS element maps (b) of bulk M23C6 with Laves phase inside (c, d) SEM image (c) and TEM image and corresponding EDS element maps (d) of Laves phase with M23C6
图6  650℃下G115钢与T91、P92、3%Co-P92和MARBN钢蠕变寿命比较[56,57]
图7  不同应力条件下蠕变裂纹形态以及裂纹扩展模型示意图[60]
图8  蠕变疲劳裂纹扩展机制(a) transgranular fracture mode of fatigue crack(b) intergranular fracture mode of creep crack
图9  不同温度下裂纹扩展速率比较[65]
NumberCCrWCoMnVSi
10.07-0.098.5-9.52.8-3.32.8-3.5≤ 0.700.18-0.25≤ 0.30
20.08-0.128.0-10.02.5-3.22.6-3.20.60-1.000.15-0.30≤ 0.50
NumberCuNbNBTiPS
1≤ 0.500.04-0.080.007-0.0080.011-0.014≤ 0.001≤ 0.002≤ 0.001
20.70-1.100.02-0.100.005-0.0100.002-0.010-≤ 0.010≤ 0.010
表2  G115钢氩弧焊焊丝成分[75,76] (mass fraction / %)

Welding method

Room temperature tensile strength

MPa

650oC

tensile strength

MPa

Impact energy absorbed at heat affected zone / J

Impact energy absorbed at

weld zone / J

SMAW7232403851
CMT + P7392775362
表3  不同焊接方式焊接接头力学性能比较[77]
1 Wu Z Q , Bai Y , Ma L T , et al . Research and development of martensitic creep-resistant steels for 650oC [J]. Iron Steel, 2015, 50(5): 1
1 吴增强, 白 银, 马龙腾 等 . 650℃马氏体耐热钢研究及其进展 [J]. 钢铁, 2015, 50(5): 1
2 Sklenicka V , Kucharova K , Svobodova M , et al . The effect of a prior short-term ageing on mechanical and creep properties of P92 steel [J]. Mater. Charact., 2018, 136: 388
3 Jin X , Zhu B Y , Li Y F , et al . Effect of the microstructure evolution on the high-temperature strength of P92 heat-resistant steel for different service times [J]. Int. J. Press. Vessels Pip., 2020, 186: 104131
4 Masuyama F . History of power plants and progress in heat resistant steels [J]. ISIJ Int., 2001, 41: 612
5 Liu Z D , Chen Z Z , He X K , et al . Systematical innovation of heat resistant materials used for 630~700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
5 刘正东, 陈正宗, 何西扣 等 . 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
6 Wang J Z , Liu Z D , Bao H S , et al . Study of steel and alloys for ultra-supercritical power plant in China [J]. Iron Steel, 2015, 50(8): 1
6 王敬忠, 刘正东, 包汉生 等 . 中国超超临界电站锅炉关键材料用钢及合金的研究现状 [J]. 钢铁, 2015, 50(8): 1
7 Chi C Y , Yu H Y , Xie X S . Research and development of austenitic heat-resistant steels for 600oC superheat/reheater tubes of USC power plant boilers [J]. World Iron Steel, 2012, 12(4): 50
7 迟成宇, 于鸿垚, 谢锡善 . 600℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展 [J]. 世界钢铁, 2012, 12(4): 50
8 Gao Q Z . Phase transformation behaviors and welding of the modified high Cr ferritic heat-resistant steel [D]. Tianjin: Tianjin University, 2012
8 高秋志 . 新型高Cr铁素体耐热钢相变行为及焊接性 [D]. 天津: 天津大学, 2012
9 Li H . Research on the high temperature oxidation and corrosion properties of new martensitic heat resistant steel [D]. Harbin: Harbin Engineering University, 2019
9 李 洪 . 新型马氏体耐热钢的高温氧化和腐蚀性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019
10 Kim B K , Tan L , Xu C , et al . Microstructural evolution of NF709 (20Cr-25Ni-1.5MoNbTiN) under neutron irradiation [J]. J. Nucl. Mater., 2016, 470: 229
11 Zhang Z , Hu Z F , Tu H Y , et al . Microstructure evolution in HR3C austenitic steel during long-term creep at 650oC [J]. Mater. Sci. Eng., 2017, A681: 74
12 Dudova N , Mishnev R , Kaibyshev R . Creep behavior of a 10%Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650 oC [J]. Mater. Sci. Eng., 2019, A766: 138353
13 Rojas D , Garcia J , Prat O , et al . Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12%Cr heat resistant steel during creep at 650oC [J]. Mater. Sci. Eng., 2011, A528: 1372
14 Yin F S , Jung W S , Chung S H . Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel [J]. Scr. Mater., 2007, 57: 469
15 Gao Q Z , Dong X , Li C , et al . Microstructure and oxidation properties of 9Cr-1.7W-0.4Mo-Co ferritic steel after isothermal aging [J]. J. Alloys Compd., 2015, 651: 537
16 Liu Z , Xie X . The Chinese 700oC A-USC development program [A]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants [M]. United Kingdom: Woodhead Publishing, 2017: 715
17 Xiao B , Xu L Y , Cayron C , et al . Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel [J]. Acta Mater., 2020, 195: 199
18 Abe F . New martensitic steels [A]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants [M]. United Kingdom: Woodhead Publishing, 2017: 323
19 Liu Z D , Cheng S C , Bao H S , et al . Steel for steam-temperature ultra-supercritical thermal power unit and preparation method thereof [P] Chin Pat., 201210574445.1, 2013
19 刘正东, 程世长, 包汉生 等 . 蒸汽温度超超临界火电机组用钢及制备方法 [P]. 中国专利, 201210574445.1, 2013)
20 Liu C X , Mao C L , Cui L , et al . Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels [J]. Acta Metall. Sin., 2021, 57: 1521
20 刘晨曦, 毛春亮, 崔 雷 等 . 低活化铁素体/马氏体钢组织调控及其固相连接研究进展 [J]. 金属学报, 2021, 57: 1521
21 Wang H , Yan W , van Zwaag S , et al . On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
22 Xu Y T , Nie Y H , Wang M J , et al . The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
23 Faulkner R G , Williams J A , Sanchez E G , et al . Influence of Co, Cu and W on microstructure of 9%Cr steel weld metals [J]. Mater. Sci. Technol., 2003, 19: 347
24 Helis L , Toda Y , Hara T , et al . Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants [J]. Mater. Sci. Eng., 2009, A510-511: 88
25 Liu Z , Wang X T , Dong C . Effect of boron on G115 martensitic heat resistant steel during aging at 650oC [J]. Mater. Sci. Eng., 2020, A787: 139529
26 Wen X L , Zhang Q Q , Chen L . A state-of-the-art review of chemical component study of the candidate steel for 650oC ultra-supercritical boiler tube [J]. Mater. Rev., 2018, 32: 2167
26 文新理, 章清泉, 陈 列 . 650℃第三代超超临界锅炉管候选钢种的化学成分研究现状 [J]. 材料导报, 2018, 32: 2167
27 Chi C Y , Yu H Y , Dong J X , et al . The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application [J]. Prog. Nat. Sci.: Mater. Int., 2012, 22: 175
28 Tan S P , Wang Z H , Cheng S C , et al . Effect of Cu content on aging precipitation behaviors of Cu-Rich Phase in Fe-Cr-Ni alloy [J]. J. Iron Steel Res. Int., 2010, 17: 63
29 Zeng Y P , Jia J D , Cai W H , et al . Effect of long-term service on the precipitates in P92 steel [J]. Int. J. Miner. Metall. Mater., 2018, 25: 913
30 Li J R , Zhang C L , Jiang B , et al . Effect of large-size M23C6-type carbides on the low-temperature toughness of martensitic heat-resistant steels [J]. J. Alloys Compd., 2016, 685: 248
31 Xu Y T , Zhang X Y , Tian Y B , et al . Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging [J]. Mater. Charact., 2016, 111: 122
32 Pandey C , Mahapatra M M , Kumar P , et al . Some studies on P91 steel and their weldments [J]. J. Alloys Compd., 2018, 743: 332
33 Abe F , Taneike M , Sawada K . Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides [J]. Int. J. Press. Vessels Pip., 2007, 84: 3
34 Kipelova A , Kaibyshev R , Belyakov A , et al . Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions [J]. Mater. Sci. Eng., 2011, A528: 1280
35 Yang L X . Multi-scale characterization of Cu and correlation study on composition-structure-properties of ultra supercritical heat resistant steel G115 [D]. Beijing: Central Iron & Steel Research Institute, 2018
35 杨丽霞 . 超超临界耐热钢G115中Cu的跨尺度表征及其成分-组织结构-性能相关性研究 [D]. 北京: 钢铁研究总院, 2018
36 Hättestrand M , Andrén H O . Microstructural development during ageing of an 11% chromium steel alloyed with copper [J]. Mater. Sci. Eng., 2001, A318: 94
37 Ma L T , Bai Y , Liu Z D . The Laves phase evolution of 9Cr-3W-3Co steel under long term isothermal treatment [J]. Steel Res. Int., 2017, 88: 1600412
38 Kipelova A , Belyakov A , Kaibyshev R . Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K [J]. Mater. Sci. Eng., 2012, A532: 71
39 Rojas D , Garcia J , Prat O , et al . 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650oC [J]. Mater. Sci. Eng., 2011, A528: 5164
40 Ma L T , Wang Y F , Di G B . Study on the microstructure evolution and tungsten content optimization of 9Cr-3W-3Co steel [J]. Materials, 2018, 11: 2080
41 Liu Z , Liu Z D , Wang X T , et al . Investigation of the microstructure and strength in G115 steel with the different concentration of tungsten during creep test [J]. Mater. Charact., 2019, 149: 95
42 Yan P , Liu Z D , Bao H S , et al . Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, A588: 22
43 Liu Z , Liu Z D , Wang X T , et al . The microstructural evolution and mechanical property in G115 steels during long-term aging at 650oC [J]. Mater. Res. Express, 2019, 6: 116
44 Guo X F , Jiang Y , Gong J M , et al . The influence of long-term thermal exposure on microstructural stabilization and mechanical properties in 9Cr-0.5Mo-1.8W-VNb heat-resistant steel [J]. Mater. Sci. Eng., 2016, A672: 194
45 Saini N , Mulik R S , Mahapatra M M . Study on the effect of ageing on laves phase evolution and their effect on mechanical properties of P92 steel [J]. Mater. Sci. Eng., 2018, A716: 179
46 Duan P , Liu Z D , Li B , et al . Study on microstructure and mechanical properties of P92 steel after high-temperature long-term aging at 650oC [J]. High Temp. Mater. Processes, 2020, 39: 545
47 Gao Q Z , Zhang Y N , Zhang H L , et al . Precipitates and particles coarsening of 9Cr-1.7W-0.4Mo-Co ferritic heat-resistant steel after isothermal aging [J]. Sci. Rep., 2017, 7: 5859
48 Liu Z , Liu Z D , Wang X T , et al . Evolution of the microstructure in aged G115 steels with the different concentration of tungsten [J]. Mater. Sci. Eng., 2018, A729: 161
49 Xiao B , Xu L Y , Zhao L , et al . Creep properties, creep deformation behavior, and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel [J]. Mater. Sci. Eng., 2018, A711: 434
50 Heo Y U , Kim Y K , Kim J S , et al . Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy [J]. Acta Mater., 2013, 61: 519
51 Isheim D , Gagliano M S , Fine M E , et al . Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale [J]. Acta Mater., 2006, 54: 841
52 Liang Y , Yan W , Shi X B , et al . On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures [J]. J. Mater. Sci. Technol., 2021, 85: 129
53 Yan P , Liu Z D . Toughness evolution of 9Cr-3W-3Co martensitic heat resistant steel during long time aging [J]. Mater. Sci. Eng., 2016, A650: 290
54 Zhang H J , Zhou R C , Tang L Y , et al . Study on microstructure and mechanical properties of P92 steel aged at 650oC [J]. Proc. CSEE, 2009, 29(suppl.): 174
54 张红军, 周荣灿, 唐丽英 等 . P92钢650℃时效的组织性能研究 [J]. 中国电机工程学报, 2009, 29(): 174
55 Isik M I , Kostka A , Eggeler G . On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels [J]. Acta Mater., 2014, 81: 230
56 Yu Y H , Liu Z D , Zhang C , et al . Correlation of creep fracture lifetime with microstructure evolution and cavity behaviors in G115 martensitic heat-resistant steel [J]. Mater. Sci. Eng., 2020, A788: 139468
57 Mishnev R , Dudova N , Fedoseeva A , et al . Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel [J]. Mater. Sci. Eng., 2016, A678: 178
58 Xiao B , Xu L Y , Zhao L , et al . Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep [J]. Mater. Sci. Eng., 2017, A707: 466
59 Xiao B , Xu L Y , Tang Z X , et al . A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep [J]. Mater. Sci. Eng., 2019, A747: 161
60 Xiao B , Xu L Y , Zhao L , et al . Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range [J]. Mater. Sci. Eng., 2019, A743: 280
61 Jiang C C , Dong Z , Song X L , et al . Long-term creep rupture strength prediction for a new grade of 9Cr martensitic creep resistant steel (G115)—An application of a new tensile creep rupture model [J]. J. Mater. Res. Technol., 2020, 9: 5542
62 Jing H Y , Luo Z X , Xu L Y , et al . Low cycle fatigue behavior and microstructure evolution of a novel 9Cr-3W-3Co tempered martensitic steel at 650 °C [J]. Mater. Sci. Eng., 2018, A731: 394
63 Luo Z X . Low cycle fatigue behavior and microstructure evolution of G115 martensitic steel at high temperature [D]. Tianjin: Tianjin University, 2018
63 罗振轩 . G115马氏体耐热钢高温低周疲劳行为及微观组织研究 [D]. 天津: 天津大学, 2018
64 Tang Z X , Jing H Y , Xu L Y , et al . Temperature effect on dwell-fatigue crack propagation behavior of novel tempered martensitic ferritic steel G115 [J]. Eng. Fract. Mech., 2020, 237: 107250
65 Tang Z X , Jing H Y , Xu L Y , et al . Creep-fatigue crack growth behavior of G115 steel under different hold time conditions [J]. Int. J. Fatigue, 2018, 116: 572
66 Xu L Y , Rong J Y , Zhao L , et al . Creep-fatigue crack growth behavior of G115 steel at 650 oC [J]. Mater. Sci. Eng., 2018, A726: 179
67 Tang Z X , Jing H Y , Xu L Y , et al . Investigating crack propagation behavior and damage evolution in G115 steel under combined steady and cyclic loads [J]. Theor. Appl. Fract. Mech., 2019, 100: 93
68 Tang Z X , Jing H Y , Xu L Y , et al . Investigation of creep-fatigue crack growth of G115 steel using a novel damage model [J]. Int. J. Mech. Sci., 2020, 183: 105827
69 Bai Y , Chen Z Z , Liu Z D , et al . Effect of temperature on steam oxidation behavior of G115 steel [J]. J. Iron Steel Res., 2020, 32: 52
69 白 银, 陈正宗, 刘正东 等 . 蒸汽温度对G115钢氧化行为的影响 [J]. 钢铁研究学报, 2020, 32: 52
70 Liu Z D , Chen Z Z , Bao H S , et al . Development and Engineering of a New Generation of Martensitic Heat Resistant Steel G115 [M]. Beijing: Metallurgical Industry Press, 2020: 263
70 刘正东, 陈正宗, 包汉生 等 . 新一代马氏体耐热钢G115研发及工程化 [M]. 北京: 冶金工业出版社, 2020: 263
71 Singh Raman R K , Khanna A S , Tiwari R K , et al . Influence of grain size on the oxidation resistance of 2 1 4 Cr-1Mo steel [J]. Oxid. Met., 1992, 37: 1
72 Bai Y , Liu Z D , Xie J X , et al . Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel [J]. Acta Metall. Sin., 2018, 54: 895
72 白 银, 刘正东, 谢建新 等 . 预氧化处理对G115钢高温蒸气氧化行为的影响 [J]. 金属学报, 2018, 54: 895
73 Shen K , Cai W H , Du S M , et al . Effect of shot peening on high-temperature steam oxidation behavior of martensitic heat-resistant steel [J]. Heat Treat. Met., 2021, 46(2): 66
73 谌 康, 蔡文河, 杜双明 等 . 喷丸对马氏体耐热钢高温蒸汽氧化行为的影响 [J]. 金属热处理, 2021, 46(2): 66
74 Dong M , Xie X Y , Zhu Y C , et al . Preparation of FeAl penetration layer on G115 and T92 steel surface and its oxidation resistance to high temperature steam [J]. Trans. Mater. Heat Treat., 2021, 42(5): 135
74 董 猛, 谢逍原, 朱阳存 等 . G115和T92钢表面FeAl渗层制备及其抗高温水蒸汽氧化性能 [J]. 材料热处理学报, 2021, 42(5): 135
75 Liu Z D , Chen Z Z , Bao H S , et al . Argon arc welding wire for heat resistant steel G 115 [P] Chin Pat., 201611250159.4, 2017
75 刘正东, 陈正宗, 包汉生 等 . G115耐热钢用氩弧焊焊丝 [P]. 中国专利, 201611250159.4, 2017)
76 Li H , She Y T , Li X Y , et al . TIG welding wire of steel for steam temperature ultra supercritical thermal power unit and its preparation method [P]. Chin Pat., 201610961348.2, 2017
76 李 浩, 佘英堂, 李欣雨 等 . 蒸汽温度超超临界火电机组用钢的TIG焊焊丝及其制备方法 [P]. 中国专利, 201610961348.2, 2017)
77 Xu L Y , Pang H N , Zhao L , et al . Microstructure and mechanical properties of CMT + P welding process on G115 steel [J]. Trans. China Weld. Inst., 2020, 41(8): 1
77 徐连勇, 庞红宁, 赵 雷 等 . G115钢CMT+P焊接工艺及组织和性能 [J]. 焊接学报, 2020, 41(8): 1
78 Qi X Q , Liu Z H , Li X . Effect of different tempering temperature on the microstructure and properties of G115 steel weld [J]. J. Phys.: Conf. Ser., 2021, 1865: 032023
79 Matsunaga T , Hongo H , Tabuchi M , et al . Suppression of grain refinement in heat-affected zone of 9Cr-3W-3Co-VNb steels [J]. Mater. Sci. Eng., 2016, A655: 168
80 Li L P , Liang J , Zhao L , et al . Effect of PWHT temperature on microstructure and mechanical properties of G115/T92 dissimilar steel welded joint [J]. Heat Treat. Met., 2019, 44(2): 68
80 李林平, 梁 军, 赵 雷 等 . 焊后热处理温度对G115/T92异种钢接头组织及力学性能的影响 [J]. 金属热处理, 2019, 44(2): 68
81 Li L P , Liang J , Zhao L , et al . Microstructure and mechanical properties of G115/T92 dissimilar welded joints [J]. Trans. Mater. Heat Treat., 2018, 39(9): 138
81 李林平, 梁 军, 赵 雷 等 . G115/T92异种钢焊接接头的显微组织及力学性能 [J]. 材料热处理学报, 2018, 39(9): 138
82 Yang M H , Zhang Z , Liu Y R , et al . Fine-grain heat affected zone softening of G115/Sanicro25 dissimilar steel welded joints after post-weld heat treatment [J]. Int. J. Press. Vessels Pip., 2020, 188: 104253
83 Xiong J K , Li T , Yuan X J , et al . Improvement in weldment of dissimilar 9% Cr heat-resistant steels by post-weld heat treatment [J]. Metals, 2020, 10: 1321
84 Zhang Y Y , Gou G Q . Microstructure and properties of 9Cr-3W-3Co steel joint by shielded metal arc welding [J]. AIP Adv., 2020, 10: 045034
85 Li T . Study on mechanical characteristics and microstructure of TIG welding on dissimilar 9%Cr heat-resistant steels [D]. Chongqing: Chongqing University, 2020
85 李 婷 . 异种9%Cr马氏体耐热钢TIG熔化焊组织及性能研究 [D]. 重庆: 重庆大学, 2020
86 Liu Z D . Industrially integrated metallurgical processing of novel G115(R) martensitic heat resistant steel pipes [A]. Proceedings of the 12th Academic Conference on chemical, metallurgical and material engineering, Chinese Academy of Engineering [C]. Zhengzhou, 2018: 348
86 刘正东 . G115(R)马氏体耐热钢管研制 [A]. 中国工程院化工、冶金与材料工程第十二届学术会议论文集 [C]. 郑州, 2018: 348
87 Lei B W , Li Y Q , Pang H P , et al . Manufacturing technology of novel heat resistant steel G115 large-diameter heavy wall seamless pipe [J]. Met. Funct. Mater., 2020, 27(5): 14
87 雷丙旺, 李永清, 庞海平 等 . 新型马氏体耐热钢G115大口径厚壁无缝钢管制造技术 [J]. 金属功能材料, 2020, 27(5): 14
88 Cong X Z , Peng X N , Peng X K , et al . Heat treatment for G115 large diameter pipe fittings [J]. Heat Treat. Met., 2021, 46(3): 90
88 丛相州, 彭杏娜, 彭先宽 等 . G115钢大口径管件的热处理 [J]. 金属热处理, 2021, 46(3): 90
89 Li H Z , Liang J , Xu L Y , et al . Effect of cyclic normalization on microstructure and impact toughness of 9Cr3W3Co steel [J]. Trans. Mater. Heat Treat., 2017, 38(10): 67
89 李海昭, 梁 军, 徐连勇 等 . 循环正火处理对9Cr3W3Co钢组织及冲击韧性的影响 [J]. 材料热处理学报, 2017, 38(10): 67
90 Ma L T , Liu Z D , Bai Y . Effect of doubled normalization on microstructure and impact toughness of 9Cr3W3Co steel [J]. Heat Treat. Met., 2017, 42(3): 18
90 马龙腾, 刘正东, 白 银 . 二次正火处理对9Cr3W3Co钢微观组织和冲击韧性的影响 [J]. 金属热处理, 2017, 42(3): 18
91 Peng X N , Cong X Z , Peng X K , et al . Experimental study on hot press bending process for G115 steel [J]. Forg. Stamping Technol., 2021, 46(2): 142
91 彭杏娜, 丛相州, 彭先宽 等 . G115钢热压弯成形工艺试验研究 [J]. 锻压技术, 2021, 46(2): 142
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[3] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.