Please wait a minute...
金属学报  2021, Vol. 57 Issue (8): 1009-1016    DOI: 10.11900/0412.1961.2020.00387
  研究论文 本期目录 | 过刊浏览 |
微观定向结构Cu-W复合材料的力学与电学性能
韩颖1(), 王宏双1, 曹云东1, 安跃军1, 谈国旗2, 李述军2, 刘增乾2, 张哲峰2
1.沈阳工业大学 电气工程学院 沈阳 110870
2.中国科学院金属研究所 沈阳 110016
Mechanical and Electrical Properties of Cu-W Composites with Micro-Oriented Structures
HAN Ying1(), WANG Hongshuang1, CAO Yundong1, AN Yuejun1, TAN Guoqi2, LI Shujun2, LIU Zengqian2, ZHANG Zhefeng2
1.School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
Ying HAN, Hongshuang WANG, Yundong CAO, Yuejun AN, Guoqi TAN, Shujun LI, Zengqian LIU, Zhefeng ZHANG. Mechanical and Electrical Properties of Cu-W Composites with Micro-Oriented Structures[J]. Acta Metall Sin, 2021, 57(8): 1009-1016.

全文: PDF(16050 KB)   HTML
摘要: 

采用熔渗法制备了具有微观定向W片层骨架结构Cu-W复合材料,对其力学和电学性能进行了研究,并与商用Cu-W复合材料进行了对比。结果表明,W含量(质量分数)为50%~90%时,具有微观定向结构的Cu-W复合材料的压缩强度在300~1100 MPa之间。压缩强度呈现出明显的各向异性,沿平行于W片层方向的强度高于垂直于W片层方向的强度。与商用Cu-W复合材料相比,具有微观定向结构的Cu-W复合材料在沿片层方向呈现出更高的导电特性和压缩强度,这主要与复合材料中Cu、W两相的微观定向规则排列有关。该复合材料有望用作电触头材料以显著提高其使用效果,延长使用寿命,减轻构件质量并降低能源损耗。

关键词 Cu-W复合材料微观定向结构力学性能电学性能    
Abstract

Cu-W composites that combine the merits of Cu and W show good electric and heat conductivity, resistance to arc erosion, and high strength, etc., and are good candidates for electric contact materials. Until now, several methods, including the high-temperature liquid phase sintering method and the hot-pressure sintering method, have been developed to fabricate Cu-W composites. However, these methods may cause an uneven distribution of constituents in the material and a relatively low density and poor electric conductivity of the material. In this study, a Cu-W composite with micro-oriented W lamellas was prepared by the infiltration method, and the mechanical and electrical properties were investigated and compared with a commercial Cu-W composite. The results showed that the compressive strength of the studied Cu-W composite with micro-oriented W lamellas was between 300 and 1100 MPa when the W content was between 50% and 90% (mass fraction). The compressive strength of the studied composites presented obvious anisotropy, and the strength along the direction parallel to the W lamellas was higher than that perpendicular to the W lamellas. Compared with commercial Cu-W composites with disordered W frameworks, composites with micro-oriented W lamellas exhibit a higher electrical conductivity and compressive strength along the W lamellar direction, which is mainly related to the regular arrangement of the two phases of Cu and W in the composites. The studied composite is expected to be used as an electrical contact material to significantly improve the effect of electric contracts and prolong their service life while reducing the mass of the components and energy consumption.

Key wordsCu-W composite    micro-oriented structure    mechanical property    electrical property
收稿日期: 2020-09-24     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(51977132);辽宁省自然科学基金项目(2019-MS-249);辽宁省科技重大专项项目(2019JH1/10100016)
作者简介: 韩 颖,女,1979年生,副教授,博士
图1  电导率测量样品示意图
图2  Cu-W复合材料有限元模拟单元模型
ElementDensityThermal conductivityElectrical conductivityMelting point
g·cm-3W·m-1·K-1107 S·m-1
Cu8.944005.9981083
W17.801751.8253410
表1  Cu、W的基本物理性能
图3  具有微观定向片层结构的W骨架和制备的Cu-W复合材料的宏观形貌(a) SEM image of sintered porous W framework with micro-oriented W lamellas(b) enlarged image of the W sheet in Fig.3a, where dense sintered necks are formed between W particles(c) macrostructure of as-fabricated Cu-W composites
图4  具有微观定向结构和商用无序骨架的Cu-W复合材料微观组织的SEM像(a, c) transverse direction (b, d) longitudinal direction
图5  具有微观定向结构和商用无序骨架的Cu-W复合材料EDS分析
图6  具有微观定向结构和商用无序骨架的Cu-W复合材料压缩强度
图7  具有微观定向结构和商用无序骨架的Cu-50%W复合材料典型压缩曲线
图8  具有微观定向结构Cu-W复合材料的有限元模型和电流密度模拟结果
图9  商用无序骨架Cu-W复合材料的有限元模型和电流密度模拟结果
1 Qian B G, Geng H R, Guo Z Q, et al. Development and application of electrical contact materials [J]. Mater. Mech. Eng., 2004, 28(3): 7
1 钱宝光, 耿浩然, 郭忠全等. 电触头材料的研究进展与应用 [J]. 机械工程材料, 2004, 28(3): 7
2 Zheng Z, Zhou X L, Zhou Y H, et al. Effect of Ni on the microstructure and properties of O-containing Cu-W alloy [J]. Mater. Rev., 2015, 29: 505
2 郑 忠, 周晓龙, 周允红等. Ni元素对含O的Cu-W合金组织与性能的影响 [J]. 材料导报, 2015, 29: 505
3 German R M, Rabin B H. Enhanced sintering through second phase additions [J]. Powder Metall., 1985, 28: 7
4 Gu D D, Shen Y F. Microstructures of laser sintered micron/nano-sized Cu-W powder [J]. Acta Metall. Sin., 2009, 45: 113
4 顾冬冬, 沈以赴. 微/纳米Cu-W粉末激光烧结体的显微组织 [J]. 金属学报, 2009, 45: 113
5 Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites [J]. Acta Metall. Sin., 2019, 55: 1319
5 马国楠, 王 东, 刘振宇等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响 [J]. 金属学报, 2019, 55: 1319
6 Zhu Z F, Wang X F, Liu H, et al. Synthesis of quasi-monodispersed SnO2 microspheres via microwave solvothermal method [J]. J. Inorg. Mater., 2012, 27: 311
6 朱振峰, 王小枫, 刘 辉等. 准单分散SnO2微球的微波溶剂热合成 [J]. 无机材料学报, 2012, 27: 311
7 Lin Z J, Sun X D, Liu S H, et al. Effect of SnO2 particle size on properties of Ag-SnO2 electrical contact materials prepared by the reductive precipitation method [J]. Adv. Mater. Res., 2014, 936: 459
8 Qiao X Q, Shen Q H, Zhang L J, et al. A novel method for the preparation of Ag/SnO2 electrical contact materials [J]. Rare Met. Mater. Eng., 2014, 43: 2614
9 Zhang Z, Zhu P X, Zhou S G. Research and development of laminated metal composite and electrode material [J]. Hot Work. Technol., 2014, 43(18): 21
9 张 喆, 竺培显, 周生刚. 金属层状复合材料及电极材料的研究进展 [J]. 热加工工艺, 2014, 43(18): 21
10 Ma X H. Research on tungsten copper contact material for high voltage switch [J]. Heilongjiang Sci. Technol. Inform., 2013, (14): 48
10 马晓红. 高压开关用钨铜触头材料研究 [J]. 黑龙江科技信息, 2013, (14): 48
11 German R G, Hens K F, Johnson J L. Powder metallurgy processing of thermal management materials for microelectronic applications [J]. Int. J. Powder Metall., 1994, 30: 205
12 Kan X Q, Ding J, Yu C, et al. Biomimetic synthesis of porous ZrC/C composite ceramic materials [J]. Mater. Rev., 2018, 32: 1602
12 阚小清, 丁 军, 余 超等. 仿生制备多孔ZrC/C复合陶瓷材料 [J]. 材料导报, 2018, 32: 1602
13 Zhuo L C, Zhao Z, Qin Z C, et al. Enhanced mechanical and arc erosion resistant properties by homogenously precipitated nanocrystalline fcc-Nb in the hierarchical W-Nb-Cu composite [J]. Composites, 2019, 161B: 336
14 Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
15 Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
16 Zhang Y, Tan G Q, Jiao D, et al. Ice-templated porous tungsten and tungsten carbide inspired by natural wood [J]. J. Mater. Sci. Technol., 2020, 45: 187
17 Wang X R, Wei S Z, Pan K M, et al. Electrical conductivity models and theoretical value calculation of W-Cu alloy [J]. Rare Met. Mater. Eng., 2019, 48: 33
18 Rajagopal C, Satyam M. Studies on electrical conductivity of insulator-conductor composites [J]. J. Appl. Phys., 1978, 49: 5536
19 Medalia A I. Electrical conduction in carbon blackcomposites [J]. Rubber Chem. Technol., 1986, 59: 432
20 van Beek L K H, van Pul B I C F. Internal field emission in carbon black-loaded natural rubber vulcanizates [J]. J. Appl. Polym. Sci., 1962, 6: 651
21 Lei Z L, Qi C M, Meng Y X, et al. Double percolation phenomenon in electrical conductive composites and its application [J]. Polym. Bull., 2002, (3): 69
21 雷忠利, 戚长谋, 孟雅新等. 导电复合材料中的双逾渗行为及其应用 [J]. 高分子通报, 2002, (3): 69
22 Xiu S X, Zou J Y, He J J. Effect of micro-features on macro-properties of CuCr contact material [J]. High Voltage Appar., 2000, 36(3): 40
22 修士新, 邹积岩, 何俊佳. CuCr触头材料微观特性对其宏观性能的影响 [J]. 高压电器, 2000, 36(3): 40
23 Zhang Z W, Hou W L, Wang Y H, et al. Notice of retraction: Microstructure evolution of Ag/SnO2 electrical contact materials via severe plastic deformation [A]. Proceedings of the 2010 International Conference on Future Information Technology and Management Engineering [C]. Changzhou, China: IEEE, 2010: 214
24 Tsuji K, Inada H, Kojima K, et al. Manufacturing process and material characteristics of Ag-Ni contacts consisting of nickel-compounded particles [J]. J. Mater. Sci., 1992, 27: 1179
25 Lin Z J. Microstructure control and properties of Ag-SnO2 and Ag-Ni electrical contact materials [D]. Shenyang: Northeastern University, 2016
25 林智杰. Ag-SnO2和Ag-Ni电触头材料微结构调控与性能研究 [D]. 沈阳: 东北大学, 2016
26 Suresh S, Mortensen A. Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour [J]. Int. Mater. Rev., 1997, 42: 85
27 Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. 2nd Ed., Cambridge: Cambridge University Press, 1997: 58
28 Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method [J]. Acta Biomater., 2014, 10: 4537
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.