Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 231-240    DOI: 10.11900/0412.1961.2020.00418
  研究论文 本期目录 | 过刊浏览 |
W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算
皇甫顥1, 王子龙1, 刘永利1(), 孟凡顺2, 宋久鹏3, 祁阳1
1.东北大学 材料科学与工程学院 沈阳 110819
2.辽宁科技大学 理学院 锦州 121001
3.厦门钨业有限公司 国家钨材料工程技术研究中心 厦门 361021
A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties
HUANGFU Hao1, WANG Zilong1, LIU Yongli1(), MENG Fanshun2, SONG Jiupeng3, QI Yang1
1.College of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.School of Science, Liaoning University of Technology, Jinzhou 121001, China
3.China National R&D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd. , Xiamen 361021, China
引用本文:

皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
Hao HUANGFU, Zilong WANG, Yongli LIU, Fanshun MENG, Jiupeng SONG, Yang QI. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. Acta Metall Sin, 2022, 58(2): 231-240.

全文: PDF(2313 KB)   HTML
摘要: 

利用基于密度泛函理论的第一性原理方法结合声子谱计算和价键作用分析,研究了Ir含量对W1 - x Ir x (x = 0~12.96,原子分数,%)合金几何结构、相稳定性、力学性能以及热力学稳定性的影响,构建了Ir的添加量与W-Ir合金的相稳定性、力学以及热力学性能的变化关系。发现W-Ir合金的相稳定性随着Ir含量的增加而逐渐降低,这与W—Ir价键中部分反键态占据Fermi能级以下区域有关;Ir在W中的添加量小于7.4%时,W-Ir合金满足基态相稳定性要求;随着温度的升高以及Ir含量的增加,W-Ir合金的热力学稳定性得到提升,表明Ir适合添加到高温条件下应用的W中;Ir的加入能降低剪切模量,改善钨合金韧性,与实验观察一致,但Ir也能提升平面抗剪切变形能力。本征脆性的Ir对W的强韧化作用与W—Ir原子键合时轨道电子的转移和重叠方式有关。

关键词 WIr弹性性能热力学性能基态稳定性电子结构    
Abstract

Tungsten (W) possess comprehensive physical and chemical properties that are suitable for aerospace and space nuclear power applications, including the highest melting temperature (3410oC) among metals, high elastic modulus, thermal shock resistance, and high temperature strength. However, its poor ductility at room temperatures significantly hinders its fabricability and potential use in the above-mentioned fields. Accordingly, to improve the ductility of W, solid solution strengthening is the primary method considered besides grain refining and deformation strengthening. Experimental studies have shown that Ir is a brittle metal with an fcc structure, but it can greatly improve the ductility of W; however, the corresponding mechanism is still unclear. Thus, using the first principles method based on density functional theory together with phonon spectrum calculations, the effect of the addition of different contents of Ir on the structure, phase stability, mechanical properties, and thermodynamic properties of W were studied. The relation between the addition of different contents of Ir and above-mentioned properties of W-Ir alloys were theoretically investigated. It was found that Ir can induce instability in the W-Ir alloy in the ground state due to the occupation of its antibonding electrons below the Fermi level. When content of Ir added is less than 7.4%, the formation of the W-Ir alloy becomes stable in the ground state. With an increase in temperature and the content of Ir, the thermodynamic stability is improved, implying that Ir is suitable for incorporation with W for application at high temperature. The addition of Ir helps to improve the toughness of the W alloy, which is consistent with the experimental observation. Besides, Ir can simultaneously improve the planar shear resistance. Furthermore, the pCOHP analysis revealed that the inherent mechanism of the ductile effect of brittle Ir in W is attributed to their different modes of electron transition and overlapping. For Ir, electrons transfer from its higher energy orbital of dx2-y2 to the lower energy d xz and d yz orbitals. In contrast, for W, the electrons transfer from its low energy orbital of dz2 to the d xz and d yz orbitals. The d xz and d yz orbitals of Ir and W form a metallic bond, which is further enhanced with an increase in the content of Ir added. Therefore, Ir acts as a toughness-enhancing element in W-Ir alloys.

Key wordsW    Ir    elastic property    thermodynamic property    ground state stability    electronic structure
收稿日期: 2020-10-26     
ZTFLH:  TG131  
作者简介: 皇甫顥,男,1995年生,硕士生
图1  W-Ir固溶合金模型示意图(a) W (b) W98.15Ir1.85 (c) W96.30Ir3.70 (d) W92.59Ir7.41 (e) W88.89Ir11.11 (f) W87.04Ir12.96
ElementSourcea / nmB / GPaG / GPaE / GPaG / BCp / GPa
WPresent0.31713051584040.5241.71
Exp.0.3165[33], 0.3166[34]314[35], 315[36]163[35], 164[36]418[35], 419[36]0.52[35], 0.52[36]41.82[35], 41.79[36]
Calc.0.3171[37]323[37], 310[38],176[37], 145[38],447[37], 377[38],0.55[37], 0.47[38],29[37], 66.70[38],
304[39], 301[40]147[39], 148[40]379[39], 382[40]0.49[40], 0.48[41]52.7[40], 59[41]
IrPresent0.38773422265550.66-39.07
Exp.0.3839[42]363[43], 353[44]221[43], 217[44]550[43], 540[44]0.61[43], 0.61[44]-13[43], -14[44]
Calc.0.3871[45]351[45], 364[46],232[45], 223[46],570[45], 555[46],0.66[45], 0.61[46],-43[45], -15[46],
405[47], 347[48]288[47], 222[48]698[47], 549[48]0.71[47], 0.64[48]-88[47], -29[48]
  
图2  W-Ir二元合金形成能(ΔE)与Ir添加量的变化关系
图3  W-Ir二元合金的晶格常数与Ir含量的关系
图4  W-Ir二元合金和纯W[35~41]的弹性常数(C11、C12、C44)、弹性模量(B、G、E)、G / B和Cp随Ir添加量的变化曲线
图5  不同W-Ir合金中Ir与第一近邻W原子所成的Ir—W1键以及Ir与第二近邻W原子所成的Ir—W2键的投影晶体轨道Hamilton布局(pCOHP)曲线(a) W98.15Ir1.85 (b) W96.30Ir3.70 (c) W87.04Ir12.96
图6  不同W-Ir二元合金的平面及三维差分电荷密度分布Color online(a) W98.15Ir1.85, (001ˉ) plane (b) W96.30Ir3.70, (001ˉ) plane(c) W87.04Ir12.96, (001ˉ) plane (d) W87.04Ir12.96, 3D distribution
图7  W-Ir合金的第一近邻原子间(W—W1、Ir—Ir1、Ir—W1)平均键长以及纯金属Ir和W的第一近邻原子间(Ir—Ir1和W—W1)平均键长
图8  不同W-Ir二元合金的自由能(F)、熵(S)、焓(H)和比热容(cV)与温度的依赖关系
1 Yin W H , Tang H P . Refractory Metal Materials and Engineering Applications [M]. Beijing: Metallurgical Industry Press, 2012: 9
1 殷为宏, 汤慧萍 . 难熔金属材料与工程应用 [M]. 北京: 冶金工业出版社, 2012: 9
2 Mu K Q , Xu K D , Wei A B , et al . Burn-off and erosion resistance of several high temperature materials to solid propellant [J]. J. Iron Steel Res., 1995, (5): 89
2 牟科强, 徐克玷, 韦昂邦 等 . 几种高温材料抗燃气烧蚀性能的研究 [J]. 钢铁研究学报, 1995, (5): 89
3 Fahrenholtz W G , Wuchina E J , Lee W E , et al . Ultra-high Temperature Ceramics: Materials for Extreme Environment Applications [M]. Hoboken, New Jersey: Wiley, 2014: 37
4 Wang L G , He D S . Interstellar navigation plasma rocket engine [J]. Astronavigation, 1964, 10: 1
4 王礼国, 何德胜 . 星际航行等离子火箭发动机 [J]. 宇宙航行, 1964, 10: 1
5 Leichtfried G , Schneibel J H , Heilmaier M . Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys [J]. Metall. Mater. Trans., 2006, 37A: 2955
6 Leonhardt T . Properties of tungsten-rhenium and tungsten-rhenium with hafnium carbide [J]. JOM, 2009, 61:(7) 68
7 Geach G A , Hughes J E . The alloys of rhenium with molybdenum or with tungsten and having good high-temperature properties [A]. Proceedings of the 2nd Plansee Seminar [C]. New York: Pergamon Press Ltd., 1956: 245
8 Luo A H , Shin K S , Jacobson D L . Ultrahigh temperature tensile properties of arc-melted tungsten and tungsten-iridium alloys [J]. Scr. Metall. Mater., 1991, 25: 2411
9 Luo A H , Jacobson D L , Shin K S . Solution softening mechanism of iridium and rhenium in tungsten at room temperature [J]. Int. J. Refract. Met. Hard Mater., 1991, 10: 107
10 McKamey C G , Lee E H , Cohron J W , et al . Grain growth behaviour and high strain rate tensile properties of gas tungsten arc welds in iridium alloy DOP-26 [J]. Sci. Technol. Weld. Joining, 2000, 5: 297
11 Wei Y , Chen L , Cai H Z , et al . Study on high temperature oxidation performance of iridium and iridium-rhodium alloy [J]. Precious Met., 2018, 39(1): 16
11 魏 燕, 陈 力, 蔡宏中 等 . 铱及铱铑合金的高温氧化性能研究 [J]. 贵金属, 2018, 39(1): 16
12 Dai S L , Hu Z H . Preparation and application of ductile iridium [J]. Precious Met., 1999, 20(3): 13
12 戴松林, 胡志海 . 塑性铱的研究及其应用 [J]. 贵金属, 1999, 20(3): 13
13 Gornostyrev Y N , Katsnelson M I , Medvedeva N I , et al . Peculiarities of defect structure and mechanical properties of iridium: Results of ab initio electronic structure calculations [J]. Phys. Rev., 2000, 62B: 7802
14 Kontsevoi O Y , Gornostyrev Y N , Freeman A J . Modeling the dislocation properties and mechanical behavior of Ir, Rh, and their refractory alloys [J]. JOM, 2005, 57(3): 43
15 Wolverton C . Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys [J]. Acta mater., 2001, 49: 3129
16 Yu R , Zhu J , Ye H Q . Calculations of single-crystal elastic constants made simple [J]. Comput. Phys. Commun., 2010, 181: 671
17 Press W H , Flannery B P , Teukolsky S A , et al . Numerical Recipes: The Art of Scientific Computing [M]. Cambridge: Cambridge University Press, 2007: 26
18 Pokluda J , Černý M , Šob M , et al . Ab initio calculations of mechanical properties: Methods and applications [J]. Prog. Mater. Sci., 2015, 73: 127
19 Verma J K D , Nag B D . On the elastic moduli of a crystal and voigt and reuss relations [J]. J. Phys. Soc. Jpn., 1965, 20: 635
20 Hill R . The elastic behaviour of a crystalline aggregate [J]. Proc. Phys. Soc., 1952, 65A: 349
21 Pugh S F . XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philos. Mag., 1954, 45: 823
22 Togo A , Oba F , Tanaka I . First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Phys. Rev., 2008, 78B: 134106
23 Mei Z G , Wang Y , Shang S L , et al . First-principles study of lattice dynamics and thermodynamics of TiO2 polymorphs [J]. Inorg. Chem., 2011, 50: 6996
24 Deringer V L , Tchougréeff A L , Dronskowski R . Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets [J]. J. Phys. Chem., 2011, 115A: 5461
25 Hughbanks T , Hoffmann R . Chains of trans-edge-sharing molybdenum octahedra: Metal-metal bonding in extended systems [J]. J. Am. Chem. Soc., 1983, 105: 3528
26 Dronskowski R , Blöechl P E . Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations [J]. J. Phys. Chem., 1993, 97: 8617
27 Maintz S , Deringer V L , Tchougréeff A L , et al . LOBSTER: A tool to extract chemical bonding from plane-wave based DFT [J]. J. Comput. Chem., 2016, 37: 1030
28 Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
29 Kresse G , Furthmüller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
30 Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
31 Blöchl P E . Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
32 Monkhorst H J , Pack J D . Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
33 Parrish W . Results of the IUCr precision lattice-parameter project [J]. Acta Cryst., 1960, 13: 838
34 Dewaele A , Loubeyre P , Mezouar M . Equations of state of six metals above 94 GPa [J]. Phys. Rev., 2004, 70B: 094112
35 Featherston F H , Neighbours J R . Elastic constants of tantalum, tungsten, and molybdenum [J]. Phys. Rev., 1963, 130: 1324
36 Stathis J H , Bolef D I . Elastic constants of tungsten between 4.2 and 77 K [J]. J. Appl. Phys., 1980, 51: 4770
37 Söderlind P , Eriksson O , Wills J M , et al . Theory of elastic constants of cubic transition metals and alloys [J]. Phys. Rev., 1993, 48B: 5844
38 Bercegeay C , Bernard S . First-principles equations of state and elastic properties of seven metals [J]. Phys. Rev., 2005, 72B: 214101
39 Koči L , Ma Y , Oganov A R , et al . Elasticity of the superconducting metals V, Nb, Ta, Mo, and W at high pressure [J]. Phys. Rev., 2008, 77B: 214101
40 Guo Z C , Luo F , Zhang X L , et al . First-principles calculations of elastic, phonon and thermodynamic properties of W [J]. Mol. Phys., 2016, 114: 3430
41 Bolef D I , De Klerk J . Elastic constants of single‐crystal Mo and W between 77° and 500°K [J]. J. Appl. Phys., 1962, 33: 2311
42 Yamabe-Mitarai Y , Ro Y , Harada H , et al . Ir-base refractory superalloys for ultra-high temperatures [J]. Metall. Mater. Trans., 1998, 29A: 537
43 Simmons G , Wang H . Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook [M]. 2nd Ed., Cambridge: MIT Press, 1971: 35
44 Martienssen M , Warlimont H . Springer Handbook of Condensed Matter and Materials Dada [M]. Berlin: Springer Verlag, 2005: 386
45 Yan H Y , Zhang M G , Zheng B B , et al . Modeling the elastic anisotropies and mechanical strengths of Ir3 X intermetallics [J]. J. Alloys Compd., 2017, 696: 611
46 Pan Y , Wen M , Wang L , et al . Iridium concentration driving the mechanical properties of iridium-aluminum compounds [J]. J. Alloys Compd., 2015, 648: 771
47 Mehl M J , Papaconstantopoulos D A . Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals [J]. Phys. Rev., 1996, 54B: 4519
48 Kamran S , Chen K Y , Chen L . Ab initio examination of ductility features of fcc metals [J]. Phys. Rev., 2009, 79B: 024106
49 Wang Z L , Gao W J , Liu Y L , et al . A first principles investigation of W1 - x Mo x (x = 0-68.75 at.%) alloys: Structural, electronic, mechanical and thermal properties [J]. J. Alloys Compd., 2020, 829: 154480
50 Hoffmann R . Solids and Surfaces: A Chemist's View of Bonding in Extended Structures [M]. New York: VCH Publishers, 1988: 106
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[7] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[8] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[9] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[10] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[11] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[12] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
[13] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.
[14] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[15] 田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红. 用慢正电子束研究H/He中性束辐照W-ZrC合金中的缺陷演化[J]. 金属学报, 2021, 57(1): 121-128.