Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 905-914    DOI: 10.11900/0412.1961.2021.00418
  研究论文 本期目录 | 过刊浏览 |
Cr添加对孪生诱发塑性钢腐蚀行为的影响
司永礼1,2, 薛金涛1,2, 王幸福1, 梁驹华1, 史子木1, 韩福生1()
1中国科学院合肥物质科学研究院 固体物理研究所 合肥 230031
2中国科学技术大学 研究生院科学岛分院 合肥 230026
Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel
SI Yongli1,2, XUE Jintao1,2, WANG Xingfu1, LIANG Juhua1, SHI Zimu1, HAN Fusheng1()
1Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
引用本文:

司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
Yongli SI, Jintao XUE, Xingfu WANG, Juhua LIANG, Zimu SHI, Fusheng HAN. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. Acta Metall Sin, 2023, 59(7): 905-914.

全文: PDF(3231 KB)   HTML
摘要: 

通过动电位极化曲线、电化学阻抗谱(EIS)测试和X射线光电子能谱(XPS)分析等研究了Cr添加对Fe-25Mn-xCr-0.3C (x = 0、3、6、9、12,质量分数,%)孪生诱发塑性(TWIP)钢腐蚀行为的影响。结果表明,TWIP钢基体中Cr含量增加导致腐蚀电位显著增加和腐蚀电流密度明显降低。耐腐蚀性能改善还通过Nyquist图中电荷转移电阻随着Cr含量的增加而增加得到证实。XPS结果表明,准钝化膜由FeO、Fe2O3、FeOOH、MnO、MnO2、Cr2O3和Cr(OH)3等组成,并且随着Cr含量增加,Cr氧化物在最外层氧化物中逐渐富集,同时Fe氧化物和Mn氧化物逐渐减少。正是这种保护性Cr氧化膜提高了TWIP钢的耐腐蚀性能。

关键词 TWIP钢耐腐蚀性能Cr合金化极化测试氧化物膜    
Abstract

High-Mn austenitic Fe-Mn-C twinning-induced plasticity (TWIP) steels are prospective candidates in many industrial fields, owing to their excellent mechanical properties. However, these steels show poor corrosion resistance, which affects their performance and prevents their applications particularly in aqueous environment. In this study, an effective way to improve the corrosion resistant property of TWIP steels was described by understanding the corrosion behavior of TWIP steel that was alloyed with Cr. A series of Fe-25Mn-xCr-0.3C (x = 0, 3, 6, 9, and 12, mass fraction, %) TWIP steels were prepared in a vacuum arc melting furnace using high purity raw materials (≥ 99.8%). Thereafter, the resulting steels were solution treated at 1200oC for 2 h under an argon atmosphere. The effect of Cr addition on the corrosion behavior of the prepared TWIP steels was investigated using various analytical techniques including XRD, potentiodynamic polarization, electrochemical impedance spectroscopy, and XPS. XRD results showed that the TWIP steels with Cr content that ranged from 3% to 12% retained their single austenite phase. Moreover, increasing the concentration of Cr in the alloys substantially increased and decreased the corrosion potential and corrosion current density, respectively. These resulted in an improvement in the corrosion resistant property of the alloys, which was verified by the increase in the charge transfer resistance found in the Nyquist plots. Meanwhile, XPS results revealed that the prepared quasi-passive oxide film was composed of FeO, Fe2O3, FeOOH, MnO, MnO2, Cr2O3, and Cr(OH)3. Furthermore, these results showed the progressive enrichment of Cr oxides and decrease of both Fe and Mn oxides in the outermost oxide as the Cr content was increased. The improved corrosion resistance of the prepared TWIP steels was caused by the protective Cr oxide film.

Key wordsTWIP steel    corrosion resistance    Cr alloying    polarization measurement    oxide film
收稿日期: 2021-09-28     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金项目(51701206);国家自然科学基金项目(51671187);中国科学院合肥物质科学研究院院长基金项目(YZJJ201703)
通讯作者: 韩福生,fshan@issp.ac.cn,主要从事高强韧高吸能金属材料设计、组织与性能调控机制与方法研究
Corresponding author: HAN Fusheng, professor, Tel: (0551)65591435, E-mail: fshan@issp.ac.cn
作者简介: 司永礼,男,1992年生,博士生
SampleCMnCrSiNiMoTiFe
0Cr0.30424.490.020.0010.0180.0010.006Bal.
3Cr0.29424.393.070.0010.0200.0010.006Bal.
6Cr0.29924.225.930.0010.0180.0010.005Bal.
9Cr0.30224.468.370.0010.0200.0010.006Bal.
12Cr0.30324.8311.330.0010.0180.0010.006Bal.
表1  孪生诱发塑性(TWIP)钢样品主要化学成分 (mass fraction / %)
图1  不同Cr含量TWIP钢样品的XRD谱
图2  12Cr样品显微组织的OM像
图3  不同Cr含量TWIP钢样品的动电位极化曲线
SampleEcorr / mVicorr / (10-6 A·cm-2)
0Cr-8181.5810
3Cr-4870.4701
6Cr-4680.4189
9Cr-2610.2244
12Cr-2230.0764
表2  基于动电位极化曲线的特征电化学参数
图4  室温下TWIP钢样品在3.5%NaCl溶液中的Nyquist图
图5  室温下TWIP钢样品在3.5%NaCl溶液中的Bode图
图6  0Cr样品在3.5%NaCl溶液中的实验和K-K转换计算的阻抗比较
图7  12Cr样品在3.5%NaCl溶液中的实验和K-K转换计算的阻抗比较
图8  用于阻抗拟合的等效电路
SampleRsRs errorCPERctRct errorχ2
Ω·cm2%Y0 / (10-4 S·cm-2·s n )Y0 error / %nn error / %Ω·cm2%10-3
0Cr12.321.02211.5102.5780.94320.8605072.5634.470
3Cr12.040.4896.0311.1070.82400.33710991.1460.799
6Cr10.940.5692.5381.2070.78800.30815850.9820.818
9Cr13.221.1050.9611.7730.84660.42885702.2653.080
12Cr10.700.5141.0280.7280.86390.179144901.3490.682
表3  基于EIS数据和图8模型的样品拟合结果
图9  恒电位极化测试后TWIP钢样品表面形貌的OM像和SEM像
图10  0Cr、3Cr和6Cr样品的XPS
图11  9Cr和12Cr样品的XPS
图12  基于XPS结果的样品表面膜的阳离子分数
1 Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
2 De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
3 Chen L Q, Zhao Y, Qin X M. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 1
doi: 10.1007/s40195-012-0501-x
4 Idrissi H, Renard K, Schryvers D, et al. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels [J]. Scr. Mater., 2010, 63: 961
doi: 10.1016/j.scriptamat.2010.07.016
5 Steinmetz D R, Jäpel T, Wietbrock B, et al. Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments [J]. Acta Mater., 2013, 61: 494
doi: 10.1016/j.actamat.2012.09.064
6 Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J]. Scr. Mater., 2008, 58: 484
doi: 10.1016/j.scriptamat.2007.10.050
7 Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels [J]. Mater. Sci. Technol., 1998, 14: 1213
doi: 10.1179/mst.1998.14.12.1213
8 Jeong K, Jin J E, Jung Y S, et al. The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2013, 61: 3399
doi: 10.1016/j.actamat.2013.02.031
9 Lan P, Tang H Y, Zhang J Q. Hot ductility of high alloy Fe-Mn-C austenite TWIP steel [J]. Mater. Sci. Eng., 2016, A660: 127
10 Yang H K, Zhang Z J, Zhang Z F. Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels [J]. Scr. Mater., 2013, 68: 992
doi: 10.1016/j.scriptamat.2013.02.060
11 Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels [J]. Metall. Mater. Trans., 2009, 40A: 3076
12 Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, A387-389: 158
13 Chang S C, Weng W H, Chen H C, et al. The cavitation erosion of Fe-Mn-Al alloys [J]. Wear, 1995, 181-183: 511
14 Tuan Y H, Wang C S, Tsai C Y, et al. Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C in 3.5%NaCl solution [J]. Mater. Chem. Phys., 2009, 114: 595
doi: 10.1016/j.matchemphys.2008.10.009
15 Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
doi: 10.1016/j.corsci.2019.04.026
16 Moon K M, Kim D A, Kim Y H, et al. Effect of Mn content on corrosion characteristics of lean Mn TWIP steel [J]. Int. J. Mod. Phys., 2018, 32B: 1840083
17 Yuan X Y, Chen L Q. Effect of grain and grain boundary features on anti-corrosion ability of a high manganese austenitic TWIP steel [J]. Acta Metall. Sin., 2016, 52: 1345
17 袁晓云, 陈礼清. 晶粒及晶界特征对高锰奥氏体TWIP钢抗腐蚀能力的影响 [J]. 金属学报, 2016, 52: 1345
doi: 10.11900/0412.1961.2016.00333
18 Wang K, Wei A P, Tong X, et al. Improvement of the anti-corrosion property of twinning-induced plasticity steel by twin-induced grain boundary engineering [J]. Mater. Lett., 2018, 211: 118
doi: 10.1016/j.matlet.2017.09.102
19 Wang W, Wang D, Han F S. Improvement of corrosion resistance of twinning-induced plasticity steel by hot-dipping aluminum with subsequent thermal diffusion treatment [J]. Mater. Lett., 2019, 248: 60
doi: 10.1016/j.matlet.2019.04.001
20 Peng S, Xie S K, Lu J T, et al. Surface characteristics and corrosion resistance of spangle on hot-dip galvanized coating [J]. J. Alloys Compd., 2017, 728: 1002
doi: 10.1016/j.jallcom.2017.09.091
21 Yuan X Y, Zhao Y, Li X, et al. Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels [J]. J. Mater. Sci. Technol., 2017, 33: 1555
doi: 10.1016/j.jmst.2017.08.004
22 Wang C J, Chang Y C. NaCl-induced hot corrosion of Fe-Mn-Al-C alloys [J]. Mater. Chem. Phys., 2002, 76: 151
doi: 10.1016/S0254-0584(01)00515-6
23 Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment [J]. Appl. Surf. Sci., 2016, 379: 39
doi: 10.1016/j.apsusc.2016.04.049
24 Xu L N, Wang B, Lu M X. Corrosion behavior of 6.5%Cr steel in high temperature and high pressure CO2 environment [J]. Acta Metall. Sin., 2016, 52: 672
24 许立宁, 王 贝, 路民旭. 65%Cr钢在高温高压CO2环境下的腐蚀行为研究 [J]. 金属学报, 2016, 52: 672
25 Ha H Y, Jang M H, Lee T H. Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23wt%Cr-based alloys [J]. Electrochim. Acta, 2016, 191: 864
doi: 10.1016/j.electacta.2016.01.118
26 Lee S, Lee C Y, Lee Y K. Schaeffler diagram for high Mn steels [J]. J. Alloys Compd., 2015, 628: 46
doi: 10.1016/j.jallcom.2014.12.134
27 Witusiewicz V T, Sommer F, Mittemeijer E J. Reevaluation of the Fe-Mn phase diagram [J]. J. Phase Equilib. Diffus., 2004, 25: 346
doi: 10.1007/s11669-004-0152-3
28 NIST X-ray photoelectron spectroscopy database [EB/OL]. (2012-09-15).
29 Bastidas J M, Polo J L, Torres C L, et al. A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function [J]. Corros. Sci., 2001, 43: 269
doi: 10.1016/S0010-938X(00)00082-2
30 Macdonald D D. Reflections on the history of electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2006, 51: 1376
doi: 10.1016/j.electacta.2005.02.107
31 Park K, Kwon H. Effects of Mn on the localized corrosion behavior of Fe-18Cr alloys [J]. Electrochim. Acta, 2010, 55: 3421
doi: 10.1016/j.electacta.2010.01.006
32 Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corros. Sci., 2008, 50: 780
doi: 10.1016/j.corsci.2007.11.004
33 Ye W, Li Y, Wang F H. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel [J]. Electrochim. Acta, 2006, 51: 4426
doi: 10.1016/j.electacta.2005.12.034
34 Miranda D A, Jaimes S A, Bastidas J M. Assessment of carbon steel microbiologically induced corrosion by electrical impedance spectroscopy [J]. J. Solid State Electrochem., 2014, 18: 389
doi: 10.1007/s10008-013-2262-5
35 Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
doi: 10.1016/j.electacta.2014.02.107
36 Abreu C M, Cristóbal M J, Losada R, et al. Long-term behaviour of AISI 304L passive layer in chloride containing medium [J]. Electrochim. Acta, 2006, 51: 1881
doi: 10.1016/j.electacta.2005.06.040
37 Yang X J, Yang Y, Sun M H, et al. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology [J]. J. Mater. Sci. Technol., 2022, 104: 67
doi: 10.1016/j.jmst.2021.05.086
[1] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[2] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[3] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[4] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[5] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[6] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[7] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[8] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[9] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[10] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[11] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[12] 孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.
[13] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[14] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[15] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.