|
|
Cr添加对孪生诱发塑性钢腐蚀行为的影响 |
司永礼1,2, 薛金涛1,2, 王幸福1, 梁驹华1, 史子木1, 韩福生1() |
1中国科学院合肥物质科学研究院 固体物理研究所 合肥 230031 2中国科学技术大学 研究生院科学岛分院 合肥 230026 |
|
Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel |
SI Yongli1,2, XUE Jintao1,2, WANG Xingfu1, LIANG Juhua1, SHI Zimu1, HAN Fusheng1() |
1Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China |
引用本文:
司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
Yongli SI,
Jintao XUE,
Xingfu WANG,
Juhua LIANG,
Zimu SHI,
Fusheng HAN.
Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. Acta Metall Sin, 2023, 59(7): 905-914.
1 |
Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
doi: 10.1038/nature14144
|
2 |
De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Mater., 2018, 142: 283
doi: 10.1016/j.actamat.2017.06.046
|
3 |
Chen L Q, Zhao Y, Qin X M. Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 1
doi: 10.1007/s40195-012-0501-x
|
4 |
Idrissi H, Renard K, Schryvers D, et al. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels [J]. Scr. Mater., 2010, 63: 961
doi: 10.1016/j.scriptamat.2010.07.016
|
5 |
Steinmetz D R, Jäpel T, Wietbrock B, et al. Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments [J]. Acta Mater., 2013, 61: 494
doi: 10.1016/j.actamat.2012.09.064
|
6 |
Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J]. Scr. Mater., 2008, 58: 484
doi: 10.1016/j.scriptamat.2007.10.050
|
7 |
Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels [J]. Mater. Sci. Technol., 1998, 14: 1213
doi: 10.1179/mst.1998.14.12.1213
|
8 |
Jeong K, Jin J E, Jung Y S, et al. The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2013, 61: 3399
doi: 10.1016/j.actamat.2013.02.031
|
9 |
Lan P, Tang H Y, Zhang J Q. Hot ductility of high alloy Fe-Mn-C austenite TWIP steel [J]. Mater. Sci. Eng., 2016, A660: 127
|
10 |
Yang H K, Zhang Z J, Zhang Z F. Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels [J]. Scr. Mater., 2013, 68: 992
doi: 10.1016/j.scriptamat.2013.02.060
|
11 |
Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels [J]. Metall. Mater. Trans., 2009, 40A: 3076
|
12 |
Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, A387-389: 158
|
13 |
Chang S C, Weng W H, Chen H C, et al. The cavitation erosion of Fe-Mn-Al alloys [J]. Wear, 1995, 181-183: 511
|
14 |
Tuan Y H, Wang C S, Tsai C Y, et al. Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C in 3.5%NaCl solution [J]. Mater. Chem. Phys., 2009, 114: 595
doi: 10.1016/j.matchemphys.2008.10.009
|
15 |
Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
doi: 10.1016/j.corsci.2019.04.026
|
16 |
Moon K M, Kim D A, Kim Y H, et al. Effect of Mn content on corrosion characteristics of lean Mn TWIP steel [J]. Int. J. Mod. Phys., 2018, 32B: 1840083
|
17 |
Yuan X Y, Chen L Q. Effect of grain and grain boundary features on anti-corrosion ability of a high manganese austenitic TWIP steel [J]. Acta Metall. Sin., 2016, 52: 1345
|
17 |
袁晓云, 陈礼清. 晶粒及晶界特征对高锰奥氏体TWIP钢抗腐蚀能力的影响 [J]. 金属学报, 2016, 52: 1345
doi: 10.11900/0412.1961.2016.00333
|
18 |
Wang K, Wei A P, Tong X, et al. Improvement of the anti-corrosion property of twinning-induced plasticity steel by twin-induced grain boundary engineering [J]. Mater. Lett., 2018, 211: 118
doi: 10.1016/j.matlet.2017.09.102
|
19 |
Wang W, Wang D, Han F S. Improvement of corrosion resistance of twinning-induced plasticity steel by hot-dipping aluminum with subsequent thermal diffusion treatment [J]. Mater. Lett., 2019, 248: 60
doi: 10.1016/j.matlet.2019.04.001
|
20 |
Peng S, Xie S K, Lu J T, et al. Surface characteristics and corrosion resistance of spangle on hot-dip galvanized coating [J]. J. Alloys Compd., 2017, 728: 1002
doi: 10.1016/j.jallcom.2017.09.091
|
21 |
Yuan X Y, Zhao Y, Li X, et al. Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels [J]. J. Mater. Sci. Technol., 2017, 33: 1555
doi: 10.1016/j.jmst.2017.08.004
|
22 |
Wang C J, Chang Y C. NaCl-induced hot corrosion of Fe-Mn-Al-C alloys [J]. Mater. Chem. Phys., 2002, 76: 151
doi: 10.1016/S0254-0584(01)00515-6
|
23 |
Xu L N, Wang B, Zhu J Y, et al. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment [J]. Appl. Surf. Sci., 2016, 379: 39
doi: 10.1016/j.apsusc.2016.04.049
|
24 |
Xu L N, Wang B, Lu M X. Corrosion behavior of 6.5%Cr steel in high temperature and high pressure CO2 environment [J]. Acta Metall. Sin., 2016, 52: 672
|
24 |
许立宁, 王 贝, 路民旭. 65%Cr钢在高温高压CO2环境下的腐蚀行为研究 [J]. 金属学报, 2016, 52: 672
|
25 |
Ha H Y, Jang M H, Lee T H. Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23wt%Cr-based alloys [J]. Electrochim. Acta, 2016, 191: 864
doi: 10.1016/j.electacta.2016.01.118
|
26 |
Lee S, Lee C Y, Lee Y K. Schaeffler diagram for high Mn steels [J]. J. Alloys Compd., 2015, 628: 46
doi: 10.1016/j.jallcom.2014.12.134
|
27 |
Witusiewicz V T, Sommer F, Mittemeijer E J. Reevaluation of the Fe-Mn phase diagram [J]. J. Phase Equilib. Diffus., 2004, 25: 346
doi: 10.1007/s11669-004-0152-3
|
28 |
NIST X-ray photoelectron spectroscopy database [EB/OL]. (2012-09-15).
|
29 |
Bastidas J M, Polo J L, Torres C L, et al. A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function [J]. Corros. Sci., 2001, 43: 269
doi: 10.1016/S0010-938X(00)00082-2
|
30 |
Macdonald D D. Reflections on the history of electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2006, 51: 1376
doi: 10.1016/j.electacta.2005.02.107
|
31 |
Park K, Kwon H. Effects of Mn on the localized corrosion behavior of Fe-18Cr alloys [J]. Electrochim. Acta, 2010, 55: 3421
doi: 10.1016/j.electacta.2010.01.006
|
32 |
Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corros. Sci., 2008, 50: 780
doi: 10.1016/j.corsci.2007.11.004
|
33 |
Ye W, Li Y, Wang F H. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel [J]. Electrochim. Acta, 2006, 51: 4426
doi: 10.1016/j.electacta.2005.12.034
|
34 |
Miranda D A, Jaimes S A, Bastidas J M. Assessment of carbon steel microbiologically induced corrosion by electrical impedance spectroscopy [J]. J. Solid State Electrochem., 2014, 18: 389
doi: 10.1007/s10008-013-2262-5
|
35 |
Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
doi: 10.1016/j.electacta.2014.02.107
|
36 |
Abreu C M, Cristóbal M J, Losada R, et al. Long-term behaviour of AISI 304L passive layer in chloride containing medium [J]. Electrochim. Acta, 2006, 51: 1881
doi: 10.1016/j.electacta.2005.06.040
|
37 |
Yang X J, Yang Y, Sun M H, et al. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology [J]. J. Mater. Sci. Technol., 2022, 104: 67
doi: 10.1016/j.jmst.2021.05.086
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|