Please wait a minute...
金属学报  2021, Vol. 57 Issue (8): 1048-1056    DOI: 10.11900/0412.1961.2020.00360
  研究论文 本期目录 | 过刊浏览 |
H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能
王文权, 杜明, 张新戈(), 耿铭章
吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130022
Microstructure and Tribological Properties of WC-Ni Matrix Cermet Coatings Prepared by Electrospark Deposition on H13 Steel Substrate
WANG Wenquan, DU Ming, ZHANG Xinge(), GENG Mingzhang
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, China
引用本文:

王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
Wenquan WANG, Ming DU, Xinge ZHANG, Mingzhang GENG. Microstructure and Tribological Properties of WC-Ni Matrix Cermet Coatings Prepared by Electrospark Deposition on H13 Steel Substrate[J]. Acta Metall Sin, 2021, 57(8): 1048-1056.

全文: PDF(14483 KB)   HTML
摘要: 

为了提高H13钢表面性能,延长其使用寿命,采用电火花沉积工艺在H13钢基体上制备了WC-Ni基金属陶瓷涂层,并分别以Ni和Mo作为过渡层制备了复合涂层。利用XRD、SEM、EDS、显微硬度计和摩擦磨损试验机分析了涂层的物相、微观组织、显微硬度和摩擦磨损性能。结果表明,WC-Ni涂层表面由溅射状沉积斑点堆积而成,横截面分为涂层区、过渡层和基体3个区域,WC硬质相弥散分布于涂层内。Ni/WC-Ni复合涂层的表面较为光滑平整,Ni过渡层的引入并未改变涂层的物相,界面处WC硬质相异常长大。Mo/WC-Ni复合涂层表面存在微细裂纹,且生成了新相Fe9.7Mo0.3。复合涂层的硬度均高于WC-Ni涂层,复合涂层的摩擦系数和磨损失重均低于基体与WC-Ni涂层,Mo/WC-Ni复合涂层具有更好的耐磨性。

关键词 电火花沉积WC-Ni基金属陶瓷涂层复合涂层组织结构摩擦磨损性能    
Abstract

H13 steel is one of the most promising materials for molds owing to its outstanding hardenability, high toughness, and thermal cracking resistance. To reinforce the surface performance and extend service life of H13 steel, a WC-Ni matrix cermet composite coating with a Ni or Mo transition layer was prepared by electrospark deposition on an H13 steel substrate. The phase compositions, microstructure, microhardness, and tribological properties of the coating were investigated in detail. The surface of the WC-Ni coating contained accumulated sputtered deposition spots. The cross section of WC-Ni coating is composed of a coating, a transition layer, and a substrate with a clear boundary; the WC hard phases are dispersed in the coating. The Ni/WC-Ni composite coating surface is relatively smooth and flat, and its phase composition is consistent with that of the WC-Ni coating. The WC hard phases show abnormal growth at the interface. The surface of a Mo/WC-Ni composite coating exhibits microcracks and indicates the formation of a new Fe9.7Mo0.3 phase. Hardness values of the composite coatings are greater than that of the WC-Ni coating, and their friction coefficient and wear loss are lower than that of the H13 steel substrate and WC-Ni coating. In addition, the antiabrasive performance of the Mo/WC-Ni composite coating is better than that of the Ni/WC-Ni composite coating.

Key wordselectrospark deposition    WC-Ni matrix cermet coating    composite coating    microstructure    tribological property
收稿日期: 2020-09-09     
ZTFLH:  TG174.44  
基金资助:中央高校基本科研业务费项目(45120031B004);吉林省省校共建项目(440050316A14)
作者简介: 王文权,男,1971年生,教授,博士
图1  电火花沉积过程示意图
图2  电火花沉积WC-Ni基金属陶瓷涂层、Mo/WC-Ni复合涂层和Ni/WC-Ni复合涂层的XRD谱
图3  电火花沉积WC-Ni基金属陶瓷涂层、Mo/WC-Ni复合涂层和Ni/WC-Ni复合涂层表面形貌的SEM像
图4  电火花沉积WC-Ni基金属陶瓷涂层的截面形貌、EDS扫描分析和WC颗粒尺寸分布图
图5  电火花沉积Ni/WC-Ni复合涂层与Mo/WC-Ni复合涂层截面形貌的SEM像及EDS线扫描分析
图6  电火花沉积WC-Ni基金属陶瓷涂层、Mo/WC-Ni复合涂层和Ni/WC-Ni复合涂层的显微硬度分布
图7  室温下摩擦载荷为5和8 N时H13钢基体、WC-Ni金属陶瓷涂层、Mo/WC-Ni复合涂层和Ni/WC-Ni复合涂层摩擦系数曲线
图8  摩擦载荷为5和8 N时H13钢基体、WC-Ni金属陶瓷涂层、Mo/WC-Ni复合涂层和Ni/WC-Ni复合涂层的磨损失重
图9  H13钢基体、WC-Ni金属陶瓷涂层、Mo/WC-Ni复合涂层和Ni/WC-Ni复合涂层的磨损形貌
AreaWFeNiOCrMo
A82.291.6711.502.140.25-
B75.8614.784.500.721.161.17
表1  图9中方框区域的EDS分析结果 (mass fraction / %)
1 Zhao X Y. Research on metal based ceramic composite coatings and the wear resistance prepared by laser cladding on H13 die steel [D]. Guangzhou: Jinan University, 2016
1 赵雪阳. H13钢表面激光熔覆制备金属基陶瓷复合涂层及其耐磨性的研究 [D]. 广州: 暨南大学, 2016
2 Liao F. PN + PECVD duplex treatment on the surface of H13 steel: Preparation and mechanical properties [D]. Guangzhou: South China University of Technology, 2012
2 廖 芳. H13钢表面PN + PECVD复合处理工艺及性能的研究 [D]. 广州: 华南理工大学, 2012
3 Cen S B, Chen H, Liu Y, et al. Effect of CeO2 on corrosion behavior of WC-12Co coatings by high velocity oxygen fuel [J]. Acta Metall. Sin., 2016, 52: 1441
3 岑升波, 陈 辉, 刘 艳等. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响 [J]. 金属学报, 2016, 52: 1441
4 Xue P. Study on modification of WC-10Ni cemented carbide [D]. Nanchang: Nanchang Hangkong University, 2017
4 薛 萍. WC-10Ni硬质合金的改性研究 [D]. 南昌: 南昌航空大学, 2017
5 Chen H Y, Wang Z C, Luo L M, et al. Effect of Ni content on microstructure and properties of WC-Ni composites prepared by electroless plating and powder metallurgy [J]. Rare Met. Mater. Eng., 2017, 46: 2820
6 Wada K, Yagi T, Gotou H, et al. Development of new WC-Ni hardmetals for use in high pressure experiments [J]. High Pressure Res., 2015, 35: 263
7 Chen Q Y, Fu W, Du D M, et al. Comparison of microstructure and properties of WC-Ni coating by atmospheric plasma spraying and high velocity oxygen-fuel spraying [J]. Rare Met. Mater. Eng., 2019, 48: 3680
7 陈清宇, 富 伟, 杜大明等. 大气等离子喷涂和超音速火焰喷涂WC-Ni涂层组织结构和性能的对比 [J]. 稀有金属材料与工程, 2019, 48: 3680
8 Zhang X Y. A study of microstructure and interface of WC-Ni by flame spraying [D]. Dalian: Dalian University of Technology, 2016
8 张翔宇. 火焰喷涂WC-Ni涂层组织与界面研究 [D]. 大连: 大连理工大学, 2016
9 Yang J X, Zhang J Q, Chang W Q, et al. High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating [J]. J. Mater. Eng., 2016, 44(6): 110
9 杨胶溪, 张健全, 常万庆等. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能 [J]. 材料工程, 2016, 44(6): 110
10 Zhao W, Zhang K, Liu P, et al. Study on microstructure and properties of laser cladding Ni-based WC composite coating [J]. J. Funct. Mater., 2019, 50: 01098
10 赵 伟, 张 柯, 刘 平等. 激光熔覆Ni基WC复合熔覆层组织与性能的研究 [J]. 功能材料, 2019, 50: 01098
11 Tehrani H M, Shoja-Razavi R, Erfanmanesh M, et al. Evaluation of the mechanical properties of WC-Ni composite coating on an AISI 321 steel substrate [J]. Opt. Laser Technol., 2020, 127: 106138
12 Wu Z W, Chen J, Piao N, et al. Synthesis and passive property of nanocomposite Ni-WC coating [J]. Acta Metall. Sin., 2013, 49: 1185
12 武占文, 陈 吉, 朴 楠等. Ni-WC纳米复合镀层的制备及钝化性能研究 [J]. 金属学报, 2013, 49: 1185
13 Johnson R N, Sheldon G L. Advances in the electrospark deposition coating process [J]. J. Vac. Sci. Technol., 1986, 4A: 2740
14 Wei X, Chen Z G, Zhong J, et al. Feasibility of preparing Mo2FeB2-based cermet coating by electrospark deposition on high speed steel [J]. Surf. Coat. Technol., 2016, 296: 58
15 Salmaliyan M, Malek G F, Ebrahimnia M. Effect of electro spark deposition process parameters on WC-Co coating on H13 steel [J]. Surf. Coat. Technol., 2017, 321: 81
16 Burkov A A. Wear resistance of electrospark WC-Cо coatings with different iron contents [J]. J. Frict. Wear, 2016, 37: 385
17 Burkov A A, Pyachin S A. Formation of WC-Co coating by a novel technique of electrospark granules deposition [J]. Mater. Des., 2015, 80: 109
18 Suzuki H, Yamamoto T. Effects of carbon content on some properties of WC-10%(Co-Ni) cemented carbides [J]. J. Jpn. Soc. Powder Powder Metall., 1968, 15: 68
19 Chen D Y, Luo Z Q. The characteristics development and application of WC-Ni cemented carbide [J]. Cement. Carb., 2007, 24: 43
19 陈德勇, 罗在清. WC-Ni硬质合金的特性、发展及其应用 [J]. 硬质合金, 2007, 24: 43
20 Zhang Y, Chen Z G, Wei X, et al. Microstructure and properties of chromium carbide based metal-ceramic coatings prepared by electro-spark deposition [J]. Rare Met. Mater. Eng., 2019, 48: 601
20 张 怡, 陈志国, 魏 祥等. 电火花沉积碳化铬基金属陶瓷涂层的微观组织与性能 [J]. 稀有金属材料与工程, 2019, 48: 601
21 Li Q. Study on preparation of novel core/shell structured WC-Ni cemented carbides and properties [D]. Nanchang: Nanchang Hangkong University, 2015
21 李 强. 新型核壳结构WC-Ni硬质合金的制备及性能研究 [D]. 南昌: 南昌航空大学, 2015
22 Yang X T, Li X Q, Yang Q B, et al. Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings [J]. Surf. Coat. Technol., 2020, 385: 125359
23 Wang R J, Qian Y Y, Liu J. Interface behavior study of WC92-Co8 coating produced by electrospark deposition [J]. Appl. Surf. Sci., 2005, 240: 42
24 Guo C, Chen J M, Zhou J S, et al. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating [J]. Surf. Coat. Technol., 2012, 206: 2064
25 Yang G R, Song W M, Li J, et al. Wear behavior of Ni/WC surface-infiltrated composite coating on copper substrate [J]. Int. J. Mater. Res., 2016, 107: 88
26 Wen S Z, Huang P. Principles of Tribology [M]. 2nd Ed., Beijing: Tsinghua University Press, 2002: 283
26 温诗铸, 黄 平. 摩擦学原理 [M]. 第2版, 北京: 清华大学出版社, 2002: 283
27 Xu J S, Zhang X C, Xuan F Z, et al. Microstructure and sliding wear resistance of laser cladded WC/Ni composite coatings with different contents of WC particle [J]. J. Mater. Eng. Perform., 2012, 21: 1904
28 Bao C G, Gao Y M, Xing J D, et al. Wear behavior of plasma sprayed Ni-WC composite coatings [J]. Key Eng. Mater., 2007, 336-338: 1731
[1] 李文亚, 张正茂, 徐雅欣, 宋志国, 殷硕. 冷喷涂Ni及镍基复合涂层研究进展[J]. 金属学报, 2022, 58(1): 1-16.
[2] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[3] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[4] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[5] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[6] 郭策安, 陈明辉, 廖依敏, 苏北, 谢冬柏, 朱圣龙, 王福会. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832.
[7] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[8] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[9] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[10] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[11] 喻利花, 董鸿志, 许俊华. C含量对TiWCN复合膜微结构、力学性能和摩擦磨损性能的影响[J]. 金属学报, 2014, 50(11): 1350-1356.
[12] 田素贵,王欣,谢君,刘臣,郭忠革,刘姣,孙文儒. GH4169G合金热处理期间的相转变特征与机理分析[J]. 金属学报, 2013, 49(7): 845-852.
[13] 王传琦, 刘洪喜, 周荣, 蒋业华, 张晓伟. 机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征[J]. 金属学报, 2013, 49(2): 221-228.
[14] 魏祥飞,张平则,魏东博,陈小虎,王琼,王若男. γ-TiAl合金表面Cr-W共渗合金层的摩擦磨损性能研究[J]. 金属学报, 2013, 49(11): 1406-1410.
[15] 许俊华, 曹峻, 喻利花. TiVCN复合膜的微结构、力学性能与摩擦磨损性能研究[J]. 金属学报, 2012, 48(5): 555-560.