Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 447-456    DOI: 10.11900/0412.1961.2022.00555
  观点文章 本期目录 | 过刊浏览 |
金属材料的组织定制
李殿中(), 王培
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Tailoring Microstructures of Metals
LI Dianzhong(), WANG Pei
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
Dianzhong LI, Pei WANG. Tailoring Microstructures of Metals[J]. Acta Metall Sin, 2023, 59(4): 447-456.

全文: PDF(2208 KB)   HTML
摘要: 

根据性能需求设计组织是金属材料的重要发展方向。本工作提出了金属材料组织定制的新学术理念,其内涵是:基于材料物理本质进行介观尺度设计,建立组织与性能的量化关系,通过逆向精准调制并制备材料组织,满足材料服役性能需求。即,根据服役性能需求,首先进行组织筛选、跨尺度计算与组织要素量化,然后基于热力学和动力学调控进行组织制备,最后进行性能考核,迭代优化,实现组织定制。组织定制的前提是保证金属材料的纯净度和均质性,只有解决了材料的纯净性问题,夹杂物、杂质元素的影响作用才能排除;只有消除了宏观偏析缺陷的影响,材料才能实现均质性,材料的本征性能才能充分体现。本工作以航空发动机轴承用M50 (G80Cr4Mo4V)钢为例,介绍了在控制钢的纯净度和宏观偏析基础上,根据疲劳性能目标要求,指出粗大的共晶碳化物是影响疲劳性能的关键组织,进而对碳化物量化设计,最后通过控制碳化物尺寸、类型、形貌及演化行为满足了疲劳性能需求。随着冶金工业的技术进步,组织定制是金属材料学科发展的必然。依托材料计算与数据科学,在组织定制基础上,未来将逐步优化合金成分设计,实现贵金属元素减量化、微量化直至素化,从而节约资源,发展绿色材料。

关键词 金属材料组织定制显微组织服役性能评价    
Abstract

In the light of the property requirements to design microstructures will become an important develop direction of metal materials. Here, a new concept of microstructure tailoring is proposed. The main features of microstructure tailoring include designing mesoscale microstructure, establishing quantitative relation between microstructures and properties, accurately inverse-designing and fabricating microstructures to satisfy the property requirements. It means screening, multi-scale calculation, and quantification of the essential microstructural factors should be performed first. Second, the microstructures are purposefully fabricated after adjusting the thermodynamics and kinetics of phase transformation. Third, the microstructures are assessed and tailored through iterative optimization. Microstructure tailoring must be preceded by purification and homogenization of metals. Only when the purity problem of materials is solved first, the influence of inclusions and impurity elements can be eliminated. Only by eliminating the macro-segregation can the material achieve homogeneity. And then the intrinsic properties of the material be fully reflected. As an example of microstructure tailoring, this study investigates the expected fatigue-life requirements of M50 (G80Cr4Mo4V) steels used for bearings in aircraft engines. By controlling the macro-segregation and purification, it is found that the fatigue-life of M50 steel mainly depends on primary carbides. And then the size, type, and morphology of the primary carbides are quantitatively tailored to fulfill the fatigue-life requirement. With technological developments in the metallurgy industry, microstructure tailoring will become a mainstay of the development of metals. And, applying data science and modeling along with microstructure tailoring technology, the alloy design will be gradually optimized in the future. The expensive metal addition will be reduced gradually, so as to save resources and develop green materials.

Key wordsmetal    tailoring microstructure    microstructure    service performance evaluation
收稿日期: 2022-11-01     
ZTFLH:  TG113.1  
基金资助:国家自然科学基金项目(52031013)
通讯作者: 李殿中,dzli@imr.ac.cn,主要从事重大装备用特殊钢与大构件研究
Corresponding author: LI Dianzhong, professor, Tel: (024)83970106, E-mail: dzli@imr.ac.cn
作者简介: 李殿中,男,1967年生,研究员,博士
图1  组织定制的技术路线示意图
图2  低氧稀土处理的双真空M50钢中夹杂物统计
图3  M50钢中一次碳化物典型形貌
图4  M50钢疲劳试样中的裂纹萌生区域形貌及EDS
图5  根据组织设计制备出的一次碳化物尺寸≤ 20μm的M50钢显微组织
图6  不同工艺制备的M50钢± 900 MPa拉压疲劳寿命Weibull分布曲线(S1为组织定制控制一次碳化物尺寸≤ 20 μm材料曲线,S2为常规生产工艺不控制一次碳化物材料曲线)
1 Ashby M, Shercliff H, Cebon D, et al. Materials: Engineering, Science, Processing and Design [M]. Amsterdam: Elsevier, 2007
2 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
2 宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
3 Hu Q M, Yang R. The endless search for better alloys [J]. Science, 2022, 378: 26
doi: 10.1126/science.ade5503
4 Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
4 孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系 [J]. 金属学报, 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
5 Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9 pmid: 36075967
6 Flemings M C. MIT studies on dendritic solidification from 1950 to 1970 [J]. J. Cryst. Growth., 2020, 530: 125246
doi: 10.1016/j.jcrysgro.2019.125246
7 Ludwig A, Wu M H, Kharicha A. On macrosegregation [J]. Metall. Mater. Trans., 2015, 46A: 4854
8 Lesoult G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
9 Li D Z, Chen X Q, Fu P X, et al. Inclusion flotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2014, 5: 5572
doi: 10.1038/ncomms6572 pmid: 25422943
10 Li X Y, Lu K. Playing with defects in metals [J]. Nat. Mater., 2017, 16: 700
doi: 10.1038/nmat4929 pmid: 28653694
11 Yang L, Li X Y, Lu K. Making materials plain: concept, principle and applications [J]. Acta Metall. Sin., 2017, 53: 1413
11 杨 乐, 李秀艳, 卢 柯. 材料素化:概念、原理及应用 [J]. 金属学报, 2017, 53: 1413
12 Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905 pmid: 31123122
13 Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled steel strip: Part I - Description of models [J]. Steel Res. Int., 2004, 75: 462
doi: 10.1002/srin.2004.75.issue-7
14 Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled strip steel: Part II - Verification and application [J]. Steel Res. Int., 2004, 75: 468
doi: 10.1002/srin.2004.75.issue-7
15 Wang C L. Phase Diagrams and Its Application [M]. 2nd Ed., Beijing: Higher Education Press, 2014: 16
15 王崇琳. 相图理论及其应用 [M]. 第2版. 北京: 高等教育出版社, 2014: 16
16 Reid A, Marshall M, Martinez I, et al. Measurement of strain evolution in overloaded roller bearings using time-of-flight neutron diffraction [J]. Mater. Des., 2020, 190: 108571
doi: 10.1016/j.matdes.2020.108571
17 National Science and Technology Council. Materials genome initiative for global competitiveness [R]. Washington: Executive Office of the President, National Science and Technology Council, 2011: 50
18 Xiao X Z, Chen L R, Yu L, et al. Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory [J]. Int. J. Plast., 2019, 116: 216
doi: 10.1016/j.ijplas.2019.01.005
19 Nimaga O G, He B B, Cheng G J, et al. Revealing orientation-dependent martensitic transformation in a medium Mn steel by micropillar compression [J]. Int. J. Plast., 2019, 123: 165
doi: 10.1016/j.ijplas.2019.07.016
20 Kapp M W, Renk O, Eckert J, et al. The importance of lamellar architecture to obtain ductility in heavily cold-worked pearlitic steels revealed by microbending experiments [J]. Acta Mater., 2022, 232: 117935
doi: 10.1016/j.actamat.2022.117935
21 Zheng X D, Han W, Yang K, et al. Phase and polarization modulation in two-dimensional In2Se3 via in situ transmission electron microscopy [J]. Sci. Adv., 2022, 8: eabo0773
doi: 10.1126/sciadv.abo0773
22 Guo Y, Britton T B, Wilkinson A J. Slip band-grain boundary interactions in commercial-purity titanium [J]. Acta Mater., 2014, 76: 1
doi: 10.1016/j.actamat.2014.05.015
23 Guo Y, Abdolvand H, Britton T B, et al. Growth of { 11 2 ¯ 2 } twins in titanium: A combined experimental and modelling investigation of the local state of deformation [J]. Acta Mater., 2017, 126: 221
doi: 10.1016/j.actamat.2016.12.066
24 Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations [J]. Int. J. Plast., 2019, 119: 249
doi: 10.1016/j.ijplas.2019.04.009
25 Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
doi: 10.1016/j.actamat.2004.08.016
26 Fu B, Yang W Y, Wang Y D, et al. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction [J]. Acta Mater., 2014, 76: 342
doi: 10.1016/j.actamat.2014.05.029
27 Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
doi: 10.1016/j.actamat.2007.02.029
28 Zhang X, Wang P, Li D Z, et al. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72: 180
doi: 10.1016/j.jmst.2020.09.023
29 Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
30 Hidalgo J, Vittorietti M, Farahani H, et al. Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel [J]. Acta Mater., 2020, 200: 74
doi: 10.1016/j.actamat.2020.08.072
31 Bong H J, Hu X, Sun X, et al. Mechanism-based constitutive modeling of ZEK100 magnesium alloy with crystal plasticity and in-situ HEXRD experiment [J]. Int. J. Plast., 2019, 113: 35
doi: 10.1016/j.ijplas.2018.09.005
32 Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
33 Hestroffer J M, Latypov M I, Stinville J C, et al. Development of grain-scale slip activity and lattice rotation fields in Inconel 718 [J]. Acta Mater., 2022, 226: 117627
doi: 10.1016/j.actamat.2022.117627
34 National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security [M]. Washington: The National Academies Press, 2008: 16
35 Holdren J P. National science and technology council, committee on technology, subcommittee on the materials genome initiative, materials genome initiative strategic plan [J]. 2014.
36 Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
doi: 10.1016/j.actamat.2019.08.033
37 Wei X L, van der Zwaag S, Jia Z X, et al. On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets [J]. Acta Mater., 2022, 235: 118103
doi: 10.1016/j.actamat.2022.118103
38 Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
39 Paramatmuni C, Guo Y, Withers P J, et al. A three-dimensional mechanistic study of the drivers of classical twin nucleation and variant selection in Mg alloys: A mesoscale modelling and experimental study [J]. Int. J. Plast., 2021, 143: 103027
doi: 10.1016/j.ijplas.2021.103027
40 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
41 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
42 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
43 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
44 Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578 pmid: 24136963
45 Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608: 62
doi: 10.1038/s41586-022-04914-8
46 Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
47 Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
48 Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57: 268
doi: 10.1016/j.pmatsci.2011.06.002
49 Du N Y, Liu H H, Cao Y F, et al. In situ investigation of the fracture of primary carbides and its mechanism in M50 steel [J]. Mater. Charact., 2022, 186: 111822
doi: 10.1016/j.matchar.2022.111822
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[11] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[12] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.