|
|
金属材料的组织定制 |
李殿中( ), 王培 |
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Tailoring Microstructures of Metals |
LI Dianzhong( ), WANG Pei |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
Dianzhong LI,
Pei WANG.
Tailoring Microstructures of Metals[J]. Acta Metall Sin, 2023, 59(4): 447-456.
1 |
Ashby M, Shercliff H, Cebon D, et al. Materials: Engineering, Science, Processing and Design [M]. Amsterdam: Elsevier, 2007
|
2 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
2 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
3 |
Hu Q M, Yang R. The endless search for better alloys [J]. Science, 2022, 378: 26
doi: 10.1126/science.ade5503
|
4 |
Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
|
4 |
孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系 [J]. 金属学报, 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
|
5 |
Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9
pmid: 36075967
|
6 |
Flemings M C. MIT studies on dendritic solidification from 1950 to 1970 [J]. J. Cryst. Growth., 2020, 530: 125246
doi: 10.1016/j.jcrysgro.2019.125246
|
7 |
Ludwig A, Wu M H, Kharicha A. On macrosegregation [J]. Metall. Mater. Trans., 2015, 46A: 4854
|
8 |
Lesoult G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
|
9 |
Li D Z, Chen X Q, Fu P X, et al. Inclusion flotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2014, 5: 5572
doi: 10.1038/ncomms6572
pmid: 25422943
|
10 |
Li X Y, Lu K. Playing with defects in metals [J]. Nat. Mater., 2017, 16: 700
doi: 10.1038/nmat4929
pmid: 28653694
|
11 |
Yang L, Li X Y, Lu K. Making materials plain: concept, principle and applications [J]. Acta Metall. Sin., 2017, 53: 1413
|
11 |
杨 乐, 李秀艳, 卢 柯. 材料素化:概念、原理及应用 [J]. 金属学报, 2017, 53: 1413
|
12 |
Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905
pmid: 31123122
|
13 |
Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled steel strip: Part I - Description of models [J]. Steel Res. Int., 2004, 75: 462
doi: 10.1002/srin.2004.75.issue-7
|
14 |
Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled strip steel: Part II - Verification and application [J]. Steel Res. Int., 2004, 75: 468
doi: 10.1002/srin.2004.75.issue-7
|
15 |
Wang C L. Phase Diagrams and Its Application [M]. 2nd Ed., Beijing: Higher Education Press, 2014: 16
|
15 |
王崇琳. 相图理论及其应用 [M]. 第2版. 北京: 高等教育出版社, 2014: 16
|
16 |
Reid A, Marshall M, Martinez I, et al. Measurement of strain evolution in overloaded roller bearings using time-of-flight neutron diffraction [J]. Mater. Des., 2020, 190: 108571
doi: 10.1016/j.matdes.2020.108571
|
17 |
National Science and Technology Council. Materials genome initiative for global competitiveness [R]. Washington: Executive Office of the President, National Science and Technology Council, 2011: 50
|
18 |
Xiao X Z, Chen L R, Yu L, et al. Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory [J]. Int. J. Plast., 2019, 116: 216
doi: 10.1016/j.ijplas.2019.01.005
|
19 |
Nimaga O G, He B B, Cheng G J, et al. Revealing orientation-dependent martensitic transformation in a medium Mn steel by micropillar compression [J]. Int. J. Plast., 2019, 123: 165
doi: 10.1016/j.ijplas.2019.07.016
|
20 |
Kapp M W, Renk O, Eckert J, et al. The importance of lamellar architecture to obtain ductility in heavily cold-worked pearlitic steels revealed by microbending experiments [J]. Acta Mater., 2022, 232: 117935
doi: 10.1016/j.actamat.2022.117935
|
21 |
Zheng X D, Han W, Yang K, et al. Phase and polarization modulation in two-dimensional In2Se3 via in situ transmission electron microscopy [J]. Sci. Adv., 2022, 8: eabo0773
doi: 10.1126/sciadv.abo0773
|
22 |
Guo Y, Britton T B, Wilkinson A J. Slip band-grain boundary interactions in commercial-purity titanium [J]. Acta Mater., 2014, 76: 1
doi: 10.1016/j.actamat.2014.05.015
|
23 |
Guo Y, Abdolvand H, Britton T B, et al. Growth of { 11 2 ¯ 2 } twins in titanium: A combined experimental and modelling investigation of the local state of deformation [J]. Acta Mater., 2017, 126: 221
doi: 10.1016/j.actamat.2016.12.066
|
24 |
Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations [J]. Int. J. Plast., 2019, 119: 249
doi: 10.1016/j.ijplas.2019.04.009
|
25 |
Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
doi: 10.1016/j.actamat.2004.08.016
|
26 |
Fu B, Yang W Y, Wang Y D, et al. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction [J]. Acta Mater., 2014, 76: 342
doi: 10.1016/j.actamat.2014.05.029
|
27 |
Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
doi: 10.1016/j.actamat.2007.02.029
|
28 |
Zhang X, Wang P, Li D Z, et al. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72: 180
doi: 10.1016/j.jmst.2020.09.023
|
29 |
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
|
30 |
Hidalgo J, Vittorietti M, Farahani H, et al. Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel [J]. Acta Mater., 2020, 200: 74
doi: 10.1016/j.actamat.2020.08.072
|
31 |
Bong H J, Hu X, Sun X, et al. Mechanism-based constitutive modeling of ZEK100 magnesium alloy with crystal plasticity and in-situ HEXRD experiment [J]. Int. J. Plast., 2019, 113: 35
doi: 10.1016/j.ijplas.2018.09.005
|
32 |
Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
|
33 |
Hestroffer J M, Latypov M I, Stinville J C, et al. Development of grain-scale slip activity and lattice rotation fields in Inconel 718 [J]. Acta Mater., 2022, 226: 117627
doi: 10.1016/j.actamat.2022.117627
|
34 |
National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security [M]. Washington: The National Academies Press, 2008: 16
|
35 |
Holdren J P. National science and technology council, committee on technology, subcommittee on the materials genome initiative, materials genome initiative strategic plan [J]. 2014.
|
36 |
Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
doi: 10.1016/j.actamat.2019.08.033
|
37 |
Wei X L, van der Zwaag S, Jia Z X, et al. On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets [J]. Acta Mater., 2022, 235: 118103
doi: 10.1016/j.actamat.2022.118103
|
38 |
Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
|
39 |
Paramatmuni C, Guo Y, Withers P J, et al. A three-dimensional mechanistic study of the drivers of classical twin nucleation and variant selection in Mg alloys: A mesoscale modelling and experimental study [J]. Int. J. Plast., 2021, 143: 103027
doi: 10.1016/j.ijplas.2021.103027
|
40 |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
41 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
|
42 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
43 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
44 |
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578
pmid: 24136963
|
45 |
Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608: 62
doi: 10.1038/s41586-022-04914-8
|
46 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
47 |
Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
|
48 |
Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57: 268
doi: 10.1016/j.pmatsci.2011.06.002
|
49 |
Du N Y, Liu H H, Cao Y F, et al. In situ investigation of the fracture of primary carbides and its mechanism in M50 steel [J]. Mater. Charact., 2022, 186: 111822
doi: 10.1016/j.matchar.2022.111822
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|