Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 831-844    DOI: 10.11900/0412.1961.2020.00376
  综述 本期目录 | 过刊浏览 |
核聚变堆偏滤器热沉材料研究现状及展望
彭吴擎亮1,2, 李强1(), 常永勤3, 王万景1,2, 陈镇1,2, 谢春意1, 王纪超1, 耿祥1, 黄伶明1,2, 周海山1,2, 罗广南1,2
1.中国科学院合肥物质科学研究院 等离子体物理研究所 合肥 230031
2.中国科学技术大学 合肥 230026
3.北京科技大学 材料科学与工程学院 北京 100083
A Review on the Development of the Heat Sink of the Fusion Reactor Divertor
PENG Wuqingliang1,2, LI Qiang1(), CHANG Yongqin3, WANG Wanjing1,2, CHEN Zhen1,2, XIE Chunyi1, WANG Jichao1, GENG Xiang1, HUANG Lingming1,2, ZHOU Haishan1,2, LUO Guangnan1,2
1.Institute of Plasma Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China
2.University of Science and Technology of China, Hefei 230026, China
3.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
Wuqingliang PENG, Qiang LI, Yongqin CHANG, Wanjing WANG, Zhen CHEN, Chunyi XIE, Jichao WANG, Xiang GENG, Lingming HUANG, Haishan ZHOU, Guangnan LUO. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. Acta Metall Sin, 2021, 57(7): 831-844.

全文: PDF(10400 KB)   HTML
摘要: 

偏滤器是磁约束核聚变装置最为关键的系统之一,直接承受强粒子流和高热流的冲击,服役环境十分苛刻,而满足偏滤器运行环境的热沉材料是聚变堆正常运行的关键之一。受控核聚变领域近30年的研究和工程经验表明,铜合金以高热导率、较高的强度、较好的热稳定性和抗中子辐照性能被认为是聚变堆偏滤器用热沉材料的首要候选材料,也可能是水冷偏滤器热沉材料的唯一候选材料。但是,根据现有商用铜合金在下一代聚变堆(中国聚变工程试验堆(CFETR)和示范性聚变核电厂(DEMO))偏滤器模拟工况下的表现,发现其无法满足CFETR偏滤器的运行要求。目前,CFETR装置的设计和预研工作已经开展并按计划稳步推进,此时适用于高热负荷部件的热沉材料研制工作就显得十分重要。本文依据中国聚变能发展路线图,介绍了下一代聚变堆偏滤器热沉材料的服役工况及其对热沉材料的要求,对现有的铜合金在下一代聚变堆偏滤器运行环境下可能存在的问题进行综合评述,最后针对我国CFETR偏滤器热沉材料的相关问题提出了应对策略。

关键词 核聚变热沉材料铜合金面向等离子体部件偏滤器    
Abstract

Divertor is one of the most important components of the magnetic confinement fusion device, which directly sustains the strong particle flow and high heat load during a harsh service circumstance. The heat sink material that accommodates the operation circumstance of the divertor is one of the crucial prerequisites to perform the normal operation of a fusion reactor. The research and engineering experiences over the past three decades indicate that copper alloys are the best and probably the only material group for the heat sink of the water-cooled target of a divertor owing to its high thermal conductivity, strength, thermal stability, and radiation resistance. However, on account of its performance under the typical irradiation scenario of a divertor in the next step fusion reactor, none of the existing commercial copper alloys can satisfy both the harsh working environment and engineering building requirements in the Chinese Fusion Engineering Test Reactor (CFETR). At present, the design and research of CFETR devices have been conducted and is progressing steadily according to the proposal. Therefore, the development of high-performance copper alloys or copper matrix composites for high heat flux components is essential. In this study, the working condition of the heat sink in the next step fusion reactor divertor was first introduced according to the Roadmap of Fusion Energy of China. Thus, the performance requirements for the heat sink and its potential application limitations in the future fusion reactor divertor were reviewed. Finally, certain countermeasures regarding the heat sink materials were proposed for the CFETR divertor.

Key wordsnuclear fusion    heat sink    copper alloy    plasma-facing component    divertor
收稿日期: 2020-09-21     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(11875288)
作者简介: 彭吴擎亮,男,1996年生,博士生
图1  ITER全钨偏滤器示意图,垂直靶板处面向等离子体单元,及穹顶处面向等离子体单元[11]
图2  EU DEMO偏滤器示意图和靶板区PFC模块截面示意图[16]
图3  热导率大于50 W/(m·K)的纯金属材料[20]
图4  中子辐照(2 dpa)对GlidCop Al25 IG和CuCrZr IG合金热导率的影响(辐照温度150和300℃)[17]
图5  辐照损伤对GlidCop Al25 IG和CuCrZr IG合金电阻率的影响(辐照温度150和300℃)[17]
图6  中子辐照对CuAl25和CuCrZr断裂韧性的影响[44]
图7  中子辐照对CuCrZr IG和CuAl25 IG均匀延伸率的影响[17]
图8  在DEMO偏滤器辐照环境下CuCrZr和Glid-Cop材料成分的变化[26]
图9  在约400℃下纯Cu和铜合金的体积肿胀与剂量关系[46]
图10  EU DEMO PFCs热沉管(CuZrCr)在3种高热负荷下的稳态温度分布(左侧)及对应热应力分布(包括HHF过程中应力分布(中间),及冷却过程应力分布(右侧))[49]
Position at the pipe10 MW·m-215 MW·m-220 MW·m-2
Outer interface (top)301376432
Inner wall (top)240284304
Outer interface (side)186204228
Inner wall (side)173184200
Interface (bottom)150150150
表1  EU DEMO PFCs热沉管给定位置的稳态温度[49] (oC)
图11  温度对铜合金屈服强度的影响[50]
图12  铜合金的屈服强度与温度倒数的关系[51]
图13  铜合金的稳态热蠕变曲线[52]
图14  温度对铜合金断裂韧性的影响[51]
图15  中子辐照和温度对CuCrZr均匀延伸率与断裂韧性的影响[51]
图16  退火温度(保温2 h)对CuCrZr合金抗拉强度和屈服强度的影响[57]
1 Barbarino M. A brief history of nuclear fusion [J]. Nat. Phys., 2020, 16: 890
2 Knaster J, Moeslang A, Muroga T. Materials research for fusion [J]. Nat. Phys., 2016, 12: 424
3
4 Wan Y X, Li J G, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57: 102009
5 Li J G, Wan Y X. Present state of Chinese magnetic fusion development and future plans [J]. J. Fusion Energy, 2019, 38: 113
6 Wang L. Experimental Physics of Magnetic Confinement Plasmas [M]. Beijing: Science Press, 2018: 488
6 王 龙. 磁约束等离子体实验物理 [M]. 北京: 科学出版社, 2018: 488
7 Qiu L J. Fusion Energy Applications [M]. Beijing: Science Press, 2008: 204
7 邱励俭. 聚变能及其应用 [M]. 北京: 科学出版社, 2008: 204
8 Federici G, Skinner C H, Brooks J N, et al. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors [J]. Nucl. Fusion, 2001, 41: 1967
9 Bolt H, Barabash V, Krauss W, et al. Materials for the plasma-facing components of fusion reactors [J]. J. Nucl. Mater., 2004, 329-333: 66
10 Raffray A R, Nygren R, Whyte D G, et al. High heat flux components—Readiness to proceed from near term fusion systems to power plants [J]. Fusion Eng. Des., 2010, 85: 93
11 Hirai T, Barabash V, Escourbiac F, et al. ITER divertor materials and manufacturing challenges [J]. Fusion Eng. Des., 2017, 125: 250
12 You J H. A review on two previous divertor target concepts for DEMO: Mutual impact between structural design requirements and materials performance [J]. Nucl. Fusion, 2015, 55: 113026
13 Federici G, Kemp R, Ward D, et al. Overview of EU DEMO design and R&D activities [J]. Fusion Eng. Des., 2014, 89: 882
14 Gilbert M R, Dudarev S L, Zheng S, et al. An integrated model for materials in a fusion power plant: Transmutation, gas production, and helium embrittlement under neutron irradiation [J]. Nucl. Fusion, 2012, 52: 083019
15 You J H, Mazzone G, Visca E, et al. Conceptual design studies for the European DEMO divertor: Rationale and first results [J]. Fusion Eng. Des., 2016, 109-111: 1598
16 You J H, Mazzone G, Bachmann C, et al. Progress in the initial design activities for the European DEMO divertor: Subproject “Cassette” [J]. Fusion Eng. Des., 2017, 124: 364
17 Fabritsiev S A, Pokrovsky A S. Effect of high doses of neutron irradiation on physico-mechanical properties of copper alloys for ITER applications [J]. Fusion Eng. Des., 2005, 73: 19
18 Singheiser L, Hirai T, Linke J, et al. Plasma-facing materials for thermo-nuclear fusion devices [J]. Trans. Indian Inst. Met., 2009, 62: 123
19 Li M Y, Werner E, You J H. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions [J]. Fusion Eng. Des., 2015, 90: 88
20 You J H. Copper matrix composites as heat sink materials for water-cooled divertor target [J]. Nucl. Mater. Energy, 2015, 5: 7
21 Mergia K, Boukos N. Structural, thermal, electrical and magnetic properties of Eurofer 97 steel [J]. J. Nucl. Mater., 2008, 373: 1
22 Tavassoli A A F, Rensman J W, Schirra M, et al. Materials design data for reduced activation martensitic steel type F82H [J]. Fusion Eng. Des., 2002, 61-62: 617
23 Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 170
24 Obitz C, Öijerholm J, Wikman S, et al. Erosion corrosion of CuCrZr specimens exposed for simulated ITER operational conditions [J]. Nucl. Mater. Energy, 2016, 9: 261
25 Maviglia F, Federici G, Strohmayer G, et al. Limitations of transient power loads on DEMO and analysis of mitigation techniques [J]. Fusion Eng. Des., 2016, 109-111: 1067
26 Ueda Y, Schmid K, Balden M, et al. Baseline high heat flux and plasma facing materials for fusion [J]. Nucl. Fusion, 2017, 57: 092006
27 ITER Organization. ITER material assessment report: 1.4. Selection of copper alloys [R]. G 74 MA 10 01-07-11 W0.2, 2001
28 Barabash V. Summary of materials properties for structural analysis of the ITER internal components [R]. ITER_D_23HL7T V 3.2, 2009
29 Xiang Z Q. A study on microstructures and high-temperature mechanical properties of Cu-Al2O3 dispersion strengthened copper [D]. Changsha: Central South University, 2014
29 向紫琪. Cu-Al2O3弥散强化铜合金的组织和高温力学性能研究 [D]. 长沙: 中南大学, 2014
30 Zhang J, Chang Y Q, Guo Z M, et al. Microstructure and nano-hardness of pure copper and ODS copper alloy under Au Ions irradiation at room temperature [J]. Acta. Metall. Sin. (Engl. Lett.), 2016, 29: 1047
31 Butterworth G J, Forty C B A. A survey of the properties of copper alloys for use as fusion reactor materials [J]. J. Nucl. Mater., 1992, 189: 237
32 Groza J R, Gibeling J C. Principles of particle selection for dispersion strengthened copper [J]. Mater. Sci. Eng., 1993, A171: 115
33 Ogbuji L U. The oxidation behavior of an ODS copper alloy Cu-Al2O3 [J]. Oxid. Met., 2004, 62: 141
34 Lee J, Kim Y C, Lee S, et al. Correlation of the microstructure and mechanical properties of oxide-dispersion-strengthened coppers fabricated by internal oxidation [J]. Metall. Mater. Trans., 2004, 35A: 493
35 Morrison A. Powder based processing of novel dispersion strengthened copper alloys for fusion applications [D]. Boston: University of Oxford, 2017
36 Fathy A, El-Kady O. Thermal expansion and thermal conductivity characteristics of Cu-Al2O3 nanocomposites [J]. Mater. Des., 2013, 46: 355
37 Kimmig S, Allen I, You J H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers [J]. J. Nucl. Mater., 2013, 440: 272
38 Neu R, Riesch J, Müller A V, et al. Tungsten fibre-reinforced composites for advanced plasma facing components [J]. Nucl. Mater. Energy, 2017, 12: 1308
39 Wang P R, Liu F Q, Wang H, et al. A review of third generation SiC fibers and SiCf/SiC composites [J]. J. Mater. Sci. Technol., 2019, 35: 2743
40 You J H, Brendel A, Nawka S, et al. Thermal and mechanical properties of infiltrated W/CuCrZr composite materials for functionally graded heat sink application [J]. J. Nucl. Mater., 2013, 438: 1
41 Coenen J W, Mao Y, Sistla S, et al. Materials development for new high heat-flux component mock-ups for DEMO [J]. Fusion Eng. Des., 2019, 146: 1431
42 Kelly A, Zweben C. Comprehensive Composite Materials [M]. Amsterdam: Elsevier, 2000, 371
43 Zinkle S J, Fabritsiev S A. Copper-alloys for high heat-flux structure applications [J]. Nucl. Fusion, 1994, 5(suppl.): 163
44 Tähtinen S, Pyykkönen M, Roikonen P K, et al. Effect of neutron irradiation on fracture toughness behaviour of copper alloys [J]. J. Nucl. Mater., 1998, 258-263: 1010
45 Fabritsiev S A, Pokrovsky A S. Effect of irradiation temperature on microstructure, radiation hardening and embrittlement of pure copper and copper-based alloy [J]. J. Nucl. Mater., 2007, 367-370: 977
46 Fabritsiev S A, Zinkle S J, Singh B N. Evaluation of copper alloys for fusion reactor divertor and first wall components [J]. J. Nucl. Mater., 1996, 233-237: 127
47 Brager H R. Effects of neutron irradiation to 63 dpa on the properties of various commercial copper alloys [J]. J. Nucl. Mater., 1986, 141-143: 79
48 Brager H R, Heinisch H L, Garner F A. Effects of neutron irradiation at 450℃ and 16 dpa on the properties of various commercial copper alloys [J]. J. Nucl. Mater., 1985, 133-134: 676
49 You J H, Visca E, Barrett T, et al. European divertor target concepts for DEMO: Design rationales and high heat flux performance [J]. Nucl. Mater. Energy, 2018, 16: 1
50 Li M, Zinkle S J. Physical and mechanical properties of copper and copper alloys [J]. Compre. Nucl. Mater., 2012, 4: 667
51 Zinkle S J. Applicability of copper alloys for DEMO high heat flux components [J]. Phys. Scr., 2016, 2016: 014004
52 Li G, Thomas B G, Stubbins J F. Modeling creep and fatigue of copper alloy [J]. Metall. Mater. Trans., 2000, 31A: 2491
53 De Groh III H C, Ellis D L, Loewenthal W S. Comparison of GRCop-84 to other Cu alloys with high thermal conductivities [J]. J. Mater. Eng. Perform., 2008, 17: 594
54 Aitkhozhin E S, Chumakov E V. Radiation-induced creep of copper, aluminium and their alloys [J]. J. Nucl. Mater., 1996, 233-237: 537
55 Pokrovsky A S, Fabritsiev S A, Barabash V R, et al. Irradiation-induced low-temperature creep of DS copper alloy [J]. Plasma Devices Oper., 1999, 7: 313
56 Kalinin G, Matera R. Comparative analysis of copper alloys for the heat sink of plasma facing components in ITER [J]. J. Nucl. Mater., 1998, 258-263: 345
57 Li Q, Zhao S X, Sun Z X, et al. Development and application of W/Cu flat-type plasma facing components at ASIPP [J]. Phys. Scr., 2017, 2017: 014020
58 Wang P Y, Feng Y, Chen H D, et al. Study on high temperature mechanical properties and softening behavior of Al2O3 dispersion strengthened copper alloy rod [J]. Dev. Appl. Mater., 2017, 32(3): 46
58 王鹏云, 冯 岩, 陈会东等. Al2O3弥散强化铜棒材高温力学性能与软化行为研究 [J]. 材料开发与应用, 2017, 32(3): 46
59 Dong S J, Kelkar G P, Zhou Y. Electrode sticking during micro-resistance welding of thin metal sheets [J]. IEEE Trans. Electron. Pack. Manuf., 2002, 25: 355
60 Li M Y, Wang H, Guo Y H, et al. Microstructures and mechanical properties of the novel CuCrZrFeTiY alloy for fusion reactor [J]. J. Nucl. Mater., 2020, 532: 152063
61 Aghamiri S M S, Oono N, Ukai S, et al. Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application [J]. Nucl. Mater. Energy, 2018, 15: 17
62 Zhou D S, Geng H W, Zeng W, et al. High temperature stabilization of a nanostructured Cu-Y2O3 composite through microalloying with Ti [J]. Mater. Sci. Eng., 2018, A712: 80
63 Zhuo H O, Tang J C, Ye N, et al. A novel approach for strengthening Cu-Y2O3 composites by in situ reaction at liquidus temperature [J]. Mater. Sci. Eng., 2013, A584: 1
64 Muller A V, Ewert D, Galatanu A, et al. Melt infiltrated tungsten-copper composites as advanced heat sink materials for plasma facing components of future nuclear fusion devices [J]. Fusion Eng. Des., 2017, 124: 455
65 Domptail F, Barrett T R, Fursdon M, et al. The design and optimisation of a monoblock divertor target for DEMO using thermal break interlayer [J]. Fusion Eng. Des., 2020, 154: 111497
66 Li Q, Xie C Y, Wang W J, et al. Optimization of W/Cu monoblock mock-up with FGM interlayer for CFETR devertor targets [J]. Fusion Eng. Des., 2019, 147: 111262
[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
[4] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[5] 王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
[6] 朱振东,徐坚. Cu56Hf27Ti17块体金属玻璃的缺口韧性[J]. 金属学报, 2013, 49(8): 969-975.
[7] 孙飞龙,李晓刚,卢琳,万红霞,杜翠薇,刘智勇. 铜合金在中国南海深海环境下的腐蚀行为研究[J]. 金属学报, 2013, 49(10): 1211-1218.
[8] 杨续跃 张之岭 王军 秦佳 陈志永. 多向压缩变形及退火制备超细晶铜合金[J]. 金属学报, 2011, 47(12): 1561-1566.
[9] 韩忠; 赵晖 . QAl-9-2合金在3.5%NaCl溶液中脱合金腐蚀研究[J]. 金属学报, 2000, 36(5): 521-524 .
[10] 吴细毛; 王中光; 李广义 . [123]Cu-16Al单晶循环形变的不稳定性 II.循环形变行为[J]. 金属学报, 1999, 35(7): 711-714 .
[11] 吴细毛; 王中光 . [123]Cu-16Al单晶循环形变的不稳定性 I.应变突发行为[J]. 金属学报, 1999, 35(7): 707-710 .
[12] 李洪晓; 郝新江; 赵刚; 郝士明 . 塑性变形对Cu-Ni-Fe合金失稳分解组织不连续粗化的影响[J]. 金属学报, 1999, 35(5): 449-452 .
[13] 王吉会;姜晓霞;李诗卓. 铜合金在3.5%NaCl+NH_3(NH_4~+)溶液中的腐蚀磨损行为[J]. 金属学报, 1997, 33(12): 1268-1274.
[14] 杨绮琴;刘冠昆;刘泽锦. 电化学合金化Y-Cu体系的生成自由能[J]. 金属学报, 1989, 25(4): 110-114.
[15] 庄应烘. 含Co,Cr,Si的铜合金中Co_5Cr_3Si_2相的行为[J]. 金属学报, 1988, 24(6): 521-523.