|
|
高熵合金的低温塑性变形机制及强韧化研究进展 |
刘俊鹏1( ), 陈浩1, 张弛1, 杨志刚1, 张勇2,3, 戴兰宏4 |
1清华大学 材料学院 教育部先进材料重点实验室 北京 100084 2北京科技大学 新金属材料国家重点实验室 北京 100083 3北京材料基因工程高精尖创新中心 北京 100083 4中国科学院力学研究所 非线性力学国家重点实验室 北京 100190 |
|
Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys |
LIU Junpeng1( ), CHEN Hao1, ZHANG Chi1, YANG Zhigang1, ZHANG Yong2,3, DAI Lanhong4 |
1Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 3Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing 100083, China 4State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
Junpeng LIU,
Hao CHEN,
Chi ZHANG,
Zhigang YANG,
Yong ZHANG,
Lanhong DAI.
Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. Acta Metall Sin, 2023, 59(6): 727-743.
1 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
2 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
|
3 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
|
4 |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
|
5 |
Zaddach A J, Niu C, Koch C C, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy [J]. JOM, 2013, 65: 1780
doi: 10.1007/s11837-013-0771-4
|
6 |
Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J]. Scr. Mater., 2015, 108: 44
doi: 10.1016/j.scriptamat.2015.05.041
|
7 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
8 |
Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures [J]. Acta Mater., 2017, 123: 285
doi: 10.1016/j.actamat.2016.10.038
|
9 |
Liu J P. Cryogenic deformation mechanisms and serration behavior of CoCrFeNi FCC high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
|
9 |
刘俊鹏. CoCrFeNi系面心立方高熵合金的低温变形机制及锯齿流变行为 [D]. 北京: 北京科技大学, 2018
|
10 |
Liu J P, Guo X X, Lin Q Y, et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures [J]. Sci. China Mater., 2019, 62: 853
doi: 10.1007/s40843-018-9373-y
|
11 |
Yang T, Zhao Y L, Luan J H, et al. Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy [J]. Scr. Mater., 2019, 164: 30
doi: 10.1016/j.scriptamat.2019.01.034
|
12 |
Naeem M, He H Y, Harjo S, et al. Temperature-dependent hardening contributions in CrFeCoNi high-entropy alloy [J]. Acta Mater., 2021, 221: 117371
doi: 10.1016/j.actamat.2021.117371
|
13 |
Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin [J]. Science, 2022, 378: 978
doi: 10.1126/science.abp8070
pmid: 36454850
|
14 |
Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties [J]. Appl. Phys. Lett., 2007, 90: 181904
doi: 10.1063/1.2734517
|
15 |
Qiao J W, Ma S G, Huang E W, et al. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures [J]. Mater. Sci. Forum., 2011, 688: 419
doi: 10.4028/www.scientific.net/MSF.688
|
16 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
17 |
Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys [J]. Acta Mater., 2012, 60: 5723
doi: 10.1016/j.actamat.2012.06.046
|
18 |
Li J M, Yang X, Zhu R L, et al. Corrosion and serration behaviors of TiZr0.5NbCr0.5V x Mo y high entropy alloys in aqueous environments [J]. Metals, 2014, 4: 597
doi: 10.3390/met4040597
|
19 |
Xia S Q, Yang X, Yang T F, et al. Irradiation resistance in Al x CoCrFeNi high entropy alloys [J]. JOM, 2015, 67: 2340
doi: 10.1007/s11837-015-1568-4
|
20 |
Shi Y Z, Yang B, Xie X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
doi: 10.1016/j.corsci.2017.02.019
|
21 |
Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8
pmid: 32555177
|
22 |
Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy [J]. Mater. Sci. Eng., 2018, A736: 156
|
23 |
Yao Y G, Huang Z H, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359: 1489
doi: 10.1126/science.aan5412
pmid: 29599236
|
24 |
Cheng Z, Wang S Z, Wu G L, et al. Tribological properties of high-entropy alloys: A review [J]. Int. J. Miner. Metall. Mater., 2022, 29: 389
doi: 10.1007/s12613-021-2373-4
|
25 |
Luan H W, Shao Y, Li J F, et al. Phase stabilities of high entropy alloys [J]. Scr. Mater., 2020, 179: 40
doi: 10.1016/j.scriptamat.2019.12.041
|
26 |
Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
|
27 |
Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
doi: 10.1016/j.actamat.2018.08.053
|
28 |
Tong Y, Jin K, Bei H, et al. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction [J]. Mater. Des., 2018, 155: 1
doi: 10.1016/j.matdes.2018.05.056
|
29 |
Sohn S S, Da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
|
30 |
Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.v32.49
|
31 |
Li J, Chen Y, He Q F, et al. Heterogeneous lattice strain strengthening in severely distorted crystalline solids [J]. Proc. Natl. Acad. Sci., 2022, 119: e2200607119
doi: 10.1073/pnas.2200607119
|
32 |
Tsai M H, Wang C W, Lai C H, et al. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization [J]. Appl. Phys. Lett., 2008, 92: 052109
|
33 |
Hsiao Y T, Tung C H, Lin S J, et al. Thermodynamic route for self-forming 1.5 nm V-Nb-Mo-Ta-W high-entropy alloy barrier layer: Roles of enthalpy and mixing entropy [J]. Acta Mater., 2020, 199: 107
doi: 10.1016/j.actamat.2020.08.029
|
34 |
Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility [J]. Scr. Mater., 2014, 72-73: 5
doi: 10.1016/j.scriptamat.2013.09.030
|
35 |
Tang Z, Gao M C, Diao H Y, et al. Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems [J]. JOM, 2013, 65: 1848
doi: 10.1007/s11837-013-0776-z
|
36 |
Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Curr. Sci., 2003, 85: 1404
|
37 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
|
38 |
Lin Q Y, Liu J P, An X H, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy [J]. Mater. Res. Lett., 2018, 6: 236
doi: 10.1080/21663831.2018.1434250
|
39 |
Pu Z, Xie Z C, Sarmah R, et al. Spatio-temporal dynamics of jerky flow in high-entropy alloy at extremely low temperature [J]. Philos. Mag., 2021, 101: 154
doi: 10.1080/14786435.2020.1822557
|
40 |
Nutor R K, Xu T D, Wang X L, et al. Liquid helium temperature deformation and local atomic structure of CoNiV medium entropy alloy [J]. Mater. Today Commun., 2022, 30: 103141
|
41 |
Wang S B, Wu M X, Shu D, et al. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures [J]. Acta Mater., 2020, 201: 517
doi: 10.1016/j.actamat.2020.10.044
|
42 |
Kim D G, Jo Y H, Yang J H, et al. Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation [J]. Scr. Mater., 2019, 171: 67
doi: 10.1016/j.scriptamat.2019.06.026
|
43 |
Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
doi: 10.1038/ncomms9736
pmid: 26507943
|
44 |
Parkin C, Moorehead M, Elbakhshwan M, et al. In situ microstructural evolution in face-centered and body-centered cubic complex concentrated solid-solution alloys under heavy ion irradiation [J]. Acta Mater., 2020, 198: 85
doi: 10.1016/j.actamat.2020.07.066
|
45 |
Gali A, George E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74
doi: 10.1016/j.intermet.2013.03.018
|
46 |
Lyu Z Y, Fan X S, Lee C, et al. Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review [J]. J. Mater. Res., 2018, 33: 2998
doi: 10.1557/jmr.2018.273
|
47 |
Moon J, Qi Y S, Tabachnikova E, et al. Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K [J]. Sci. Rep., 2018, 8: 11074
doi: 10.1038/s41598-018-29446-y
|
48 |
Nutor R K, Cao Q P, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range [J]. Sci. Adv., 2021, 7: eabi4404
doi: 10.1126/sciadv.abi4404
|
49 |
Liu J P, Chen J X, Liu T W, et al. Superior strength-ductility CoCrNi medium-entropy alloy wire [J]. Scr. Mater., 2020, 181: 19
doi: 10.1016/j.scriptamat.2020.02.002
|
50 |
Tian Y Z, Peng S Y, Chen S F, et al. Temperature-dependent tensile properties of ultrafine-grained C-doped CoCrFeMnNi high-entropy alloy [J]. Rare Met., 2022, 41: 2877
doi: 10.1007/s12598-022-01972-9
|
51 |
Shim S H, Moon J, Pouraliakbar H, et al. Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures [J]. J. Alloys Compd., 2022, 897: 163217
doi: 10.1016/j.jallcom.2021.163217
|
52 |
Wang Y T, Li J B, Yang K H, et al. Research progress and prospects of interstitial atoms and particle enhanced CoCrFeMnNi high entropy alloy [J]. Trans. Mater. Heat Treat., 2022, 43: 1
|
52 |
王毅涛, 李建波, 杨凯华 等. 间隙原子及颗粒增强CoCrFeMnNi高熵合金的研究进展及展望 [J]. 材料热处理学报, 2022, 43: 1
|
53 |
Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged Al x CoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
doi: 10.1016/j.intermet.2015.11.002
|
54 |
Zhang Y, Peng W J. Microstructural control and properties optimization of high-entropy alloys [J]. Procedia Eng., 2012, 27: 1169
doi: 10.1016/j.proeng.2011.12.568
|
55 |
Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy [J]. Intermetallics, 2015, 59: 8
doi: 10.1016/j.intermet.2014.12.004
|
56 |
Tang Q H, Huang Y, Huang Y Y, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing [J]. Mater. Lett., 2015, 151: 126
doi: 10.1016/j.matlet.2015.03.066
|
57 |
Yu P F, Cheng H, Zhang L J, et al. Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2016, A655: 283
|
58 |
Moon J, Qi Y S, Tabachnikova E, et al. Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K [J]. Mater. Lett., 2017, 202: 86
doi: 10.1016/j.matlet.2017.05.065
|
59 |
Sathiyamoorthi P, Moon J, Bae J W, et al. Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing [J]. Scr. Mater., 2019, 163: 152
doi: 10.1016/j.scriptamat.2019.01.016
|
60 |
Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
|
61 |
Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
doi: 10.1038/ncomms15719
pmid: 28604656
|
62 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
63 |
Li D Y, Li Z M, Xie L, et al. Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy [J]. Nano Res. 2022, 15: 4859
doi: 10.1007/s12274-021-3719-y
|
64 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
doi: 10.1016/j.actamat.2015.08.076
|
65 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
66 |
Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi [J]. Acta Mater. 2018, 144: 107
doi: 10.1016/j.actamat.2017.10.050
|
67 |
Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures [J]. Acta Mater., 2019, 165: 228
doi: 10.1016/j.actamat.2018.11.049
|
68 |
Liu H C, Kuo C M, Shen P K, et al. Disordering of L12 phase in high-entropy alloy deformed at cryogenic temperature [J]. Adv. Eng. Mater., 2021, 23: 2100564
doi: 10.1002/adem.v23.12
|
69 |
Jo Y H, Yang J H, Doh K Y, et al. Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures [J]. J. Alloys Compd., 2020, 844: 156090
doi: 10.1016/j.jallcom.2020.156090
|
70 |
Zhang K S, Zhang X H, Zhang E G, et al. Strengthening of ferrous medium entropy alloys by promoting phase transformation [J]. Intermetallics, 2021, 136: 107265
doi: 10.1016/j.intermet.2021.107265
|
71 |
Wei C B, Lu Y P, Du X H, et al. Remarkable strength of a non-equiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2021, A818: 141446
|
72 |
Liu D, Jin X, Guo N, et al. Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination [J]. Mater. Sci. Eng., 2021, A818: 141386
|
73 |
Dong Y, Duan S G, Huang X, et al. Excellent strength-ductility synergy in as-cast Al0.6CoCrFeNi2Mo0.08V0.04 high-entropy alloy at room and cryogenic temperatures [J]. Mater. Lett., 2021, 294: 129778
doi: 10.1016/j.matlet.2021.129778
|
74 |
Fiocchi J, Mostaed A, Coduri M, et al. Enhanced cryogenic and ambient temperature mechanical properties of CoCuFeMnNi high entropy alloy through controlled heat treatment [J]. J. Alloys Compd., 2022, 910: 164810
doi: 10.1016/j.jallcom.2022.164810
|
75 |
Pei B, Fan J P, Wang Z, et al. Excellent combination of strength and ductility in CoNiCr-based MP159 alloys at cryogenic temperature [J]. J. Alloys Compd., 2022, 907: 164144
doi: 10.1016/j.jallcom.2022.164144
|
76 |
Giwa A M, Aitken Z H, Liaw P K, et al. Effect of temperature on small-scale deformation of individual face-centered-cubic and body-centered-cubic phases of an Al0.7CoCrFeNi high-entropy alloy [J]. Mater. Des., 2020, 191: 108611
doi: 10.1016/j.matdes.2020.108611
|
77 |
Sun S J, Tian Y Z, Lin H R, et al. Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy [J]. J. Alloys Compd., 2019, 806: 992
doi: 10.1016/j.jallcom.2019.07.357
|
78 |
Ding Q Q, Fu X Q, Chen D K, et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures [J]. Mater. Today, 2019, 25: 21
doi: 10.1016/j.mattod.2019.03.001
|
79 |
Jang M J, Kwak H, Lee Y W, et al. Plastic deformation behavior of 40Fe-25Ni-15Cr-10Co-10V high-entropy alloy for cryogenic applications [J]. Met. Mater. Int., 2019, 25: 277
doi: 10.1007/s12540-018-0184-6
|
80 |
Górecki K, Bała P, Bednarczyk W, et al. Cryogenic behaviour of the Al5Ti5Co35Ni35Fe20 multi-principal component alloy [J]. Mater. Sci. Eng., 2019, A745: 346
|
81 |
Sun S J, Tian Y Z, Lin H R, et al. Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K [J]. Mater. Sci. Eng., 2019, A740-741: 336
|
82 |
Sun S J, Tian Y Z, An X H, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J]. Mater. Today Nano., 2018, 4: 46
|
83 |
Bönisch M, Wu Y, Sehitoglu H. Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature [J]. Sci. Rep., 2018, 8: 10663
doi: 10.1038/s41598-018-28784-1
pmid: 30006547
|
84 |
Jo Y H, Choi W M, Sohn S S, et al. Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys [J]. Mater. Sci. Eng., 2018, A724: 403
|
85 |
Lu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
|
85 |
吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
|
86 |
Abuzaid W, Egilmez M, Chumlyakov Y I. TWIP-TRIP effect in single crystalline VFeCoCrNi multi-principle element alloy [J]. Scr. Mater., 2021, 194: 113637
doi: 10.1016/j.scriptamat.2020.113637
|
87 |
Wu P F, Gan K F, Yan D S, et al. The temperature dependence of deformation behaviors in high-entropy alloys: A review [J]. Metals, 2021, 11: 2005
doi: 10.3390/met11122005
|
88 |
Rizi M S, Minouei H, Lee B J, et al. Effects of carbon and molybdenum on the nanostructural evolution and strength/ductility trade-off in Fe40Mn40Co10Cr10 high-entropy alloys [J]. J. Alloys Compd., 2022, 911: 165108
doi: 10.1016/j.jallcom.2022.165108
|
89 |
Park H D, Won J W, Moon J, et al. Fe55Co17.5Ni10Cr12.5Mo5 high-entropy alloy with outstanding cryogenic mechanical properties driven by deformation-induced phase transformation behavior [J]. Met. Mater. Int., 2023, 29: 95
doi: 10.1007/s12540-022-01215-7
|
90 |
Jo Y H, Choi W M, Kim D G, et al. FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45Co x Ni35- x medium-entropy alloys [J]. Sci. Rep., 2019, 9: 2948
doi: 10.1038/s41598-019-39570-y
pmid: 30814569
|
91 |
Kwon H, Moon J, Bae J W, et al. Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-entropy alloys at cryogenic temperature [J]. Scr. Mater., 2020, 188: 140
doi: 10.1016/j.scriptamat.2020.07.023
|
92 |
Wang Z W, Lu W J, Raabe D, et al. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions [J]. J. Alloys Compd., 2019, 781: 734
doi: 10.1016/j.jallcom.2018.12.061
|
93 |
Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
doi: 10.1016/j.actamat.2020.04.052
|
94 |
He Z F, Jia N, Wang H W, et al. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86: 158
doi: 10.1016/j.jmst.2020.12.079
|
95 |
Bae J W, Seol J B, Moon J, et al. Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures [J]. Acta Mater., 2018, 161: 388
doi: 10.1016/j.actamat.2018.09.057
|
96 |
Jo Y H, Choi W M, Kim D G, et al. Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2019, A743: 665
|
97 |
Du X H, Huo X F, Chang H T, et al. Superior strength-ductility combination of a Co-rich CoCrNiAlTi high-entropy alloy at room and cryogenic temperatures [J]. Mater. Res. Express, 2020, 7: 034001
|
98 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
99 |
Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range [J]. Acta Mater., 2017, 124: 143
doi: 10.1016/j.actamat.2016.11.016
|
100 |
Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures [J]. Mater. Res. Lett., 2022, 10: 602
doi: 10.1080/21663831.2022.2078169
|
101 |
Huo W Y, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures [J]. Scr. Mater., 2017, 141: 125
doi: 10.1016/j.scriptamat.2017.08.006
|
102 |
Chen J X, Li T, Chen Y, et al. Ultra-strong heavy-drawn eutectic high entropy alloy wire [J]. Acta Mater., 2023, 243: 118515
doi: 10.1016/j.actamat.2022.118515
|
103 |
Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nat. Commun., 2020, 11: 6240
doi: 10.1038/s41467-020-20109-z
pmid: 33288762
|
104 |
Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z
pmid: 32404913
|
105 |
Wang S D, Wang J H, Yang Y, et al. Ultrastrong interstitially-strengthened chemically complex martensite via tuning phase stability [J]. Scr. Mater., 2023, 226: 115257
doi: 10.1016/j.scriptamat.2022.115257
|
106 |
Chung H, Choi W S, Jun H, et al. Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy [J]. Nat. Commun., 2023, 14: 145
doi: 10.1038/s41467-023-35863-z
pmid: 36627295
|
107 |
Liu X F, Tian Z L, Zhang X F, et al. "Self-sharpening" tungsten high-entropy alloy [J]. Acta Mater., 2020, 186: 257
doi: 10.1016/j.actamat.2020.01.005
|
108 |
Li Z, Zhao S, Diao H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure [J]. Sci. Rep., 2017, 7: 42742
doi: 10.1038/srep42742
pmid: 28210000
|
109 |
Jiao Z M, Ma S G, Chu M Y, et al. Superior mechanical properties of AlCoCrFeNiTi x high-entropy alloys upon dynamic loading [J]. J. Mater. Eng. Perform., 2016, 25: 451
doi: 10.1007/s11665-015-1869-3
|
110 |
Tang Y, Wang R X, Xiao B, et al. A review on the dynamic-mechanical behaviors of high-entropy alloys [J]. Prog. Mater. Sci., 2023, 135: 101090
doi: 10.1016/j.pmatsci.2023.101090
|
111 |
He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy [J]. Sci. Bull., 2018, 63: 362
doi: 10.1016/j.scib.2018.01.022
pmid: 36658873
|
112 |
Li Z Z, Zhao S T, Alotaibi S M, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2018, 151: 424
doi: 10.1016/j.actamat.2018.03.040
|
113 |
Wang L, Qiao J W, Ma S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Mater. Sci. Eng., 2018, A727: 208
|
114 |
Qiao Y, Chen Y, Cao F H, et al. Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension [J]. Int. J. Impact Eng., 2021, 158: 104008
doi: 10.1016/j.ijimpeng.2021.104008
|
115 |
Zhao S T, Li Z Z, Zhu C Y, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy [J]. Sci. Adv., 2021, 7: eabb3108
doi: 10.1126/sciadv.abb3108
|
116 |
Wang R X, Tang Y, Li S, et al. Research progress on deformation mechanisms under dynamic loading of high-entropy alloys [J]. Mater. Rep., 2021, 35: 17001
|
116 |
王睿鑫, 唐 宇, 李 顺 等. 高熵合金动态载荷下变形机制的研究进展 [J]. 材料导报. 2021, 35: 17001
|
117 |
Qin S, Yang M X, Liu Y K, et al. Superior dynamic shear properties and deformation mechanisms in a high entropy alloy with dual heterogeneous structures [J]. J. Mater. Res. Technol., 2022, 19: 3287
doi: 10.1016/j.jmrt.2022.06.074
|
118 |
Huang A M, Fensin S J, Meyers M A. Strain-rate effects and dynamic behavior of high entropy alloys [J]. J. Mater. Res. Technol., 2023, 22: 307
doi: 10.1016/j.jmrt.2022.11.057
|
119 |
Hu M L, Song W D, Duan D B, et al. Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures [J]. Int. J. Mech. Sci., 2020, 182: 105738
doi: 10.1016/j.ijmecsci.2020.105738
|
120 |
Qiao Y, Cao F H, Chen Y, et al. Impact tension behavior of heavy-drawn nanocrystalline CoCrNi medium entropy alloy wire [J]. Mater. Sci. Eng., 2022, A856: 144041
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|