Please wait a minute...
金属学报  2023, Vol. 59 Issue (6): 727-743    DOI: 10.11900/0412.1961.2022.00598
  综述 本期目录 | 过刊浏览 |
高熵合金的低温塑性变形机制及强韧化研究进展
刘俊鹏1(), 陈浩1, 张弛1, 杨志刚1, 张勇2,3, 戴兰宏4
1清华大学 材料学院 教育部先进材料重点实验室 北京 100084
2北京科技大学 新金属材料国家重点实验室 北京 100083
3北京材料基因工程高精尖创新中心 北京 100083
4中国科学院力学研究所 非线性力学国家重点实验室 北京 100190
Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys
LIU Junpeng1(), CHEN Hao1, ZHANG Chi1, YANG Zhigang1, ZHANG Yong2,3, DAI Lanhong4
1Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing 100083, China
4State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
Junpeng LIU, Hao CHEN, Chi ZHANG, Zhigang YANG, Yong ZHANG, Lanhong DAI. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. Acta Metall Sin, 2023, 59(6): 727-743.

全文: PDF(4309 KB)   HTML
摘要: 

高熵合金是由多种主要元素组成的新型金属材料,固有的多主元和构型熵高等特点,使其具备诸多优异的力学及物理化学性能,从而引起了研究人员的广泛关注。在低温工程应用方面,高熵合金优异的强塑性、良好的韧性和抗冲击能力、较高的相稳定性等特点使其在深空探测、低温超导、气体工业等领域极具应用前景。本文综述了高熵合金的低温研究进展,详细总结了高熵合金在低温环境的变形机制及强韧化机理,并结合传统低温工程材料的性能对比,展望了高熵合金未来低温工程应用的主要方向。

关键词 高熵合金低温性能变形机理强韧化策略    
Abstract

Owing to the multi-principal element and higher intrinsic configurational entropy, high-entropy alloys exhibit excellent mechanical and physicochemical performance, which has garnered extensive attention from researchers. By virtue of the excellent performances in terms of superior strength, ductility, toughness, impact resistance property, and adjustable phase stability, especially in cryogenic environments, high-entropy alloys have broad application prospects in fields such as deep-space exploration, low temperature superconducting, and the gas industry. In this paper, the deformation and strengthening-toughening mechanisms of high-entropy alloys are summarized by reviewing the cryogenic progress. Furthermore, the promising research directions of high-entropy alloys in cryogenic engineering application combined with the performance of traditional cryogenic materials are also presented.

Key wordshigh-entropy alloy    cryogenic property    deformation mechanism    strengthening-toughening strategy
收稿日期: 2022-11-21     
ZTFLH:  TG139  
基金资助:国家重点研发计划项目(2022YFE0110800);国家重点研发计划项目(2021YFB3702300);国家自然科学基金项目(52101169);国家自然科学基金项目(52273280)
通讯作者: 刘俊鹏,liujunpeng@mail.tsinghua.edu.cn,主要从事高熵合金的基础研究
Corresponding author: LIU Junpeng, Tel:(010)62781646, E-mail: liujunpeng@mail.tsinghua.edu.cn
作者简介: 刘俊鹏,男,1988年生,博士
图1  具有严重晶格畸变特征的高熵合金化学无序原子结构示意图[3]Color online
图2  低温轧制后CoCrFeNiMn高熵合金的室温及低温拉伸性能[9]Color online
图3  Ni30Co30Fe13Cr15Al6Ti6高熵合金低温变形后的位错组态[11]Color online(a) TEM image of the dislocation structure of the deformed alloy at 77 K(b) nano-spaced stacking fault (SF) network in the deformed alloy
图4  高熵合金中由位错反应生成的Lomer-Cottrell (L-C)锁[66]Color omline
图5  Al3.6Co27.3Cr18.2Fe18.2Ni27.3Ti5.4高熵合金中L12析出相低温变形后的孪晶特征[68]Color online(a) HRTEM image (b) enlarged image of the yellow rectangle in Fig.5a (c) SAED pattern of the twinning feature
图6  B掺杂Fe40Mn40Co10Cr10高熵合金低温变形组织中的短程有序结构[93]Color online(a) TEM image(b) SAED pattern of the SRO feature (The SRO-generated reflections are seen only under [112] zone axis marked by yellow arrows)
图7  CoCrFeNi高熵合金极低温变形时的孪晶及相变特征[10]Color online(a) TEM image and SAED pattern (inset), showing the twins and fcc-hcp phase transition occur in the sample(b) HRTEM image (T—twins)(c) atomic image of the enlarged red rectangle in Fig.7b, witness the hcp SF appears in the sample
图8  高熵合金和其他低温金属材料的超低温性能对比[10]Color online
图9  铁基中熵合金的低温硬化机制示意图[95]Color online
图10  Fe55Co17.5Cr12.5Ni10Mo3C2高熵合金的微观形貌、力学性能及低温组织演变特征[91]Color online(a) TEM image and SAED patterns of the M6C (inset A) and M23C6 (inset B) precipitates in the original sample(b) tensile properties at room and cryogenic temperatures(c) EBSD images of HEA alloy during the tensile test at 77 K (εT—true strain)
图11  AlCoCrFeNi2.1高熵合金的共晶组织[98]
图12  Al19Co20Fe20Ni41共晶高熵合金两相组织的低温变形特点[100]
图13  热拉拔CoCrNi丝材的室温及低温力学性能[49]
图14  AlCoCrFeNi2.1共晶高熵合金丝材低温拉伸时的组织特征[102](a) deformation twins (DT) and dislocation cells (DC) in fcc matrix and microstructure refinement deriving from dense dislocation cross-slip in B2 phase of EHEA wire during cryogenic tension(b) SAED pattern of B2 phase (green circle) in Fig.14a
图15  不同类型高熵合金的低温强度-延伸率Ashby图
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
3 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
4 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
5 Zaddach A J, Niu C, Koch C C, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy [J]. JOM, 2013, 65: 1780
doi: 10.1007/s11837-013-0771-4
6 Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J]. Scr. Mater., 2015, 108: 44
doi: 10.1016/j.scriptamat.2015.05.041
7 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
8 Li D Y, Li C X, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures [J]. Acta Mater., 2017, 123: 285
doi: 10.1016/j.actamat.2016.10.038
9 Liu J P. Cryogenic deformation mechanisms and serration behavior of CoCrFeNi FCC high-entropy alloys [D]. Beijing: University of Science and Technology Beijing, 2018
9 刘俊鹏. CoCrFeNi系面心立方高熵合金的低温变形机制及锯齿流变行为 [D]. 北京: 北京科技大学, 2018
10 Liu J P, Guo X X, Lin Q Y, et al. Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures [J]. Sci. China Mater., 2019, 62: 853
doi: 10.1007/s40843-018-9373-y
11 Yang T, Zhao Y L, Luan J H, et al. Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy [J]. Scr. Mater., 2019, 164: 30
doi: 10.1016/j.scriptamat.2019.01.034
12 Naeem M, He H Y, Harjo S, et al. Temperature-dependent hardening contributions in CrFeCoNi high-entropy alloy [J]. Acta Mater., 2021, 221: 117371
doi: 10.1016/j.actamat.2021.117371
13 Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin [J]. Science, 2022, 378: 978
doi: 10.1126/science.abp8070 pmid: 36454850
14 Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties [J]. Appl. Phys. Lett., 2007, 90: 181904
doi: 10.1063/1.2734517
15 Qiao J W, Ma S G, Huang E W, et al. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures [J]. Mater. Sci. Forum., 2011, 688: 419
doi: 10.4028/www.scientific.net/MSF.688
16 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
17 Hemphill M A, Yuan T, Wang G Y, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys [J]. Acta Mater., 2012, 60: 5723
doi: 10.1016/j.actamat.2012.06.046
18 Li J M, Yang X, Zhu R L, et al. Corrosion and serration behaviors of TiZr0.5NbCr0.5V x Mo y high entropy alloys in aqueous environments [J]. Metals, 2014, 4: 597
doi: 10.3390/met4040597
19 Xia S Q, Yang X, Yang T F, et al. Irradiation resistance in Al x CoCrFeNi high entropy alloys [J]. JOM, 2015, 67: 2340
doi: 10.1007/s11837-015-1568-4
20 Shi Y Z, Yang B, Xie X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
doi: 10.1016/j.corsci.2017.02.019
21 Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8 pmid: 32555177
22 Pu Z, Chen Y, Dai L H. Strong resistance to hydrogen embrittlement of high-entropy alloy [J]. Mater. Sci. Eng., 2018, A736: 156
23 Yao Y G, Huang Z H, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359: 1489
doi: 10.1126/science.aan5412 pmid: 29599236
24 Cheng Z, Wang S Z, Wu G L, et al. Tribological properties of high-entropy alloys: A review [J]. Int. J. Miner. Metall. Mater., 2022, 29: 389
doi: 10.1007/s12613-021-2373-4
25 Luan H W, Shao Y, Li J F, et al. Phase stabilities of high entropy alloys [J]. Scr. Mater., 2020, 179: 40
doi: 10.1016/j.scriptamat.2019.12.041
26 Song H Q, Tian F Y, Hu Q M, et al. Local lattice distortion in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 023404
27 Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
doi: 10.1016/j.actamat.2018.08.053
28 Tong Y, Jin K, Bei H, et al. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction [J]. Mater. Des., 2018, 155: 1
doi: 10.1016/j.matdes.2018.05.056
29 Sohn S S, Da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
30 Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.v32.49
31 Li J, Chen Y, He Q F, et al. Heterogeneous lattice strain strengthening in severely distorted crystalline solids [J]. Proc. Natl. Acad. Sci., 2022, 119: e2200607119
doi: 10.1073/pnas.2200607119
32 Tsai M H, Wang C W, Lai C H, et al. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization [J]. Appl. Phys. Lett., 2008, 92: 052109
33 Hsiao Y T, Tung C H, Lin S J, et al. Thermodynamic route for self-forming 1.5 nm V-Nb-Mo-Ta-W high-entropy alloy barrier layer: Roles of enthalpy and mixing entropy [J]. Acta Mater., 2020, 199: 107
doi: 10.1016/j.actamat.2020.08.029
34 Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility [J]. Scr. Mater., 2014, 72-73: 5
doi: 10.1016/j.scriptamat.2013.09.030
35 Tang Z, Gao M C, Diao H Y, et al. Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems [J]. JOM, 2013, 65: 1848
doi: 10.1007/s11837-013-0776-z
36 Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Curr. Sci., 2003, 85: 1404
37 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
38 Lin Q Y, Liu J P, An X H, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy [J]. Mater. Res. Lett., 2018, 6: 236
doi: 10.1080/21663831.2018.1434250
39 Pu Z, Xie Z C, Sarmah R, et al. Spatio-temporal dynamics of jerky flow in high-entropy alloy at extremely low temperature [J]. Philos. Mag., 2021, 101: 154
doi: 10.1080/14786435.2020.1822557
40 Nutor R K, Xu T D, Wang X L, et al. Liquid helium temperature deformation and local atomic structure of CoNiV medium entropy alloy [J]. Mater. Today Commun., 2022, 30: 103141
41 Wang S B, Wu M X, Shu D, et al. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures [J]. Acta Mater., 2020, 201: 517
doi: 10.1016/j.actamat.2020.10.044
42 Kim D G, Jo Y H, Yang J H, et al. Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation [J]. Scr. Mater., 2019, 171: 67
doi: 10.1016/j.scriptamat.2019.06.026
43 Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
doi: 10.1038/ncomms9736 pmid: 26507943
44 Parkin C, Moorehead M, Elbakhshwan M, et al. In situ microstructural evolution in face-centered and body-centered cubic complex concentrated solid-solution alloys under heavy ion irradiation [J]. Acta Mater., 2020, 198: 85
doi: 10.1016/j.actamat.2020.07.066
45 Gali A, George E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74
doi: 10.1016/j.intermet.2013.03.018
46 Lyu Z Y, Fan X S, Lee C, et al. Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review [J]. J. Mater. Res., 2018, 33: 2998
doi: 10.1557/jmr.2018.273
47 Moon J, Qi Y S, Tabachnikova E, et al. Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K [J]. Sci. Rep., 2018, 8: 11074
doi: 10.1038/s41598-018-29446-y
48 Nutor R K, Cao Q P, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range [J]. Sci. Adv., 2021, 7: eabi4404
doi: 10.1126/sciadv.abi4404
49 Liu J P, Chen J X, Liu T W, et al. Superior strength-ductility CoCrNi medium-entropy alloy wire [J]. Scr. Mater., 2020, 181: 19
doi: 10.1016/j.scriptamat.2020.02.002
50 Tian Y Z, Peng S Y, Chen S F, et al. Temperature-dependent tensile properties of ultrafine-grained C-doped CoCrFeMnNi high-entropy alloy [J]. Rare Met., 2022, 41: 2877
doi: 10.1007/s12598-022-01972-9
51 Shim S H, Moon J, Pouraliakbar H, et al. Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures [J]. J. Alloys Compd., 2022, 897: 163217
doi: 10.1016/j.jallcom.2021.163217
52 Wang Y T, Li J B, Yang K H, et al. Research progress and prospects of interstitial atoms and particle enhanced CoCrFeMnNi high entropy alloy [J]. Trans. Mater. Heat Treat., 2022, 43: 1
52 王毅涛, 李建波, 杨凯华 等. 间隙原子及颗粒增强CoCrFeMnNi高熵合金的研究进展及展望 [J]. 材料热处理学报, 2022, 43: 1
53 Li D Y, Zhang Y. The ultrahigh charpy impact toughness of forged Al x CoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
doi: 10.1016/j.intermet.2015.11.002
54 Zhang Y, Peng W J. Microstructural control and properties optimization of high-entropy alloys [J]. Procedia Eng., 2012, 27: 1169
doi: 10.1016/j.proeng.2011.12.568
55 Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy [J]. Intermetallics, 2015, 59: 8
doi: 10.1016/j.intermet.2014.12.004
56 Tang Q H, Huang Y, Huang Y Y, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing [J]. Mater. Lett., 2015, 151: 126
doi: 10.1016/j.matlet.2015.03.066
57 Yu P F, Cheng H, Zhang L J, et al. Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2016, A655: 283
58 Moon J, Qi Y S, Tabachnikova E, et al. Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K [J]. Mater. Lett., 2017, 202: 86
doi: 10.1016/j.matlet.2017.05.065
59 Sathiyamoorthi P, Moon J, Bae J W, et al. Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing [J]. Scr. Mater., 2019, 163: 152
doi: 10.1016/j.scriptamat.2019.01.016
60 Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
61 Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
doi: 10.1038/ncomms15719 pmid: 28604656
62 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
63 Li D Y, Li Z M, Xie L, et al. Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy [J]. Nano Res. 2022, 15: 4859
doi: 10.1007/s12274-021-3719-y
64 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
doi: 10.1016/j.actamat.2015.08.076
65 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
66 Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi [J]. Acta Mater. 2018, 144: 107
doi: 10.1016/j.actamat.2017.10.050
67 Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures [J]. Acta Mater., 2019, 165: 228
doi: 10.1016/j.actamat.2018.11.049
68 Liu H C, Kuo C M, Shen P K, et al. Disordering of L12 phase in high-entropy alloy deformed at cryogenic temperature [J]. Adv. Eng. Mater., 2021, 23: 2100564
doi: 10.1002/adem.v23.12
69 Jo Y H, Yang J H, Doh K Y, et al. Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures [J]. J. Alloys Compd., 2020, 844: 156090
doi: 10.1016/j.jallcom.2020.156090
70 Zhang K S, Zhang X H, Zhang E G, et al. Strengthening of ferrous medium entropy alloys by promoting phase transformation [J]. Intermetallics, 2021, 136: 107265
doi: 10.1016/j.intermet.2021.107265
71 Wei C B, Lu Y P, Du X H, et al. Remarkable strength of a non-equiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2021, A818: 141446
72 Liu D, Jin X, Guo N, et al. Non-equiatomic FeMnCrNiAl high-entropy alloys with heterogeneous structures for strength and ductility combination [J]. Mater. Sci. Eng., 2021, A818: 141386
73 Dong Y, Duan S G, Huang X, et al. Excellent strength-ductility synergy in as-cast Al0.6CoCrFeNi2Mo0.08V0.04 high-entropy alloy at room and cryogenic temperatures [J]. Mater. Lett., 2021, 294: 129778
doi: 10.1016/j.matlet.2021.129778
74 Fiocchi J, Mostaed A, Coduri M, et al. Enhanced cryogenic and ambient temperature mechanical properties of CoCuFeMnNi high entropy alloy through controlled heat treatment [J]. J. Alloys Compd., 2022, 910: 164810
doi: 10.1016/j.jallcom.2022.164810
75 Pei B, Fan J P, Wang Z, et al. Excellent combination of strength and ductility in CoNiCr-based MP159 alloys at cryogenic temperature [J]. J. Alloys Compd., 2022, 907: 164144
doi: 10.1016/j.jallcom.2022.164144
76 Giwa A M, Aitken Z H, Liaw P K, et al. Effect of temperature on small-scale deformation of individual face-centered-cubic and body-centered-cubic phases of an Al0.7CoCrFeNi high-entropy alloy [J]. Mater. Des., 2020, 191: 108611
doi: 10.1016/j.matdes.2020.108611
77 Sun S J, Tian Y Z, Lin H R, et al. Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy [J]. J. Alloys Compd., 2019, 806: 992
doi: 10.1016/j.jallcom.2019.07.357
78 Ding Q Q, Fu X Q, Chen D K, et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures [J]. Mater. Today, 2019, 25: 21
doi: 10.1016/j.mattod.2019.03.001
79 Jang M J, Kwak H, Lee Y W, et al. Plastic deformation behavior of 40Fe-25Ni-15Cr-10Co-10V high-entropy alloy for cryogenic applications [J]. Met. Mater. Int., 2019, 25: 277
doi: 10.1007/s12540-018-0184-6
80 Górecki K, Bała P, Bednarczyk W, et al. Cryogenic behaviour of the Al5Ti5Co35Ni35Fe20 multi-principal component alloy [J]. Mater. Sci. Eng., 2019, A745: 346
81 Sun S J, Tian Y Z, Lin H R, et al. Achieving high ductility in the 1.7  GPa grade CoCrFeMnNi high-entropy alloy at 77 K [J]. Mater. Sci. Eng., 2019, A740-741: 336
82 Sun S J, Tian Y Z, An X H, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J]. Mater. Today Nano., 2018, 4: 46
83 Bönisch M, Wu Y, Sehitoglu H. Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature [J]. Sci. Rep., 2018, 8: 10663
doi: 10.1038/s41598-018-28784-1 pmid: 30006547
84 Jo Y H, Choi W M, Sohn S S, et al. Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys [J]. Mater. Sci. Eng., 2018, A724: 403
85 Lu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
85 吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
doi: 10.11900/0412.1961.2018.00372
86 Abuzaid W, Egilmez M, Chumlyakov Y I. TWIP-TRIP effect in single crystalline VFeCoCrNi multi-principle element alloy [J]. Scr. Mater., 2021, 194: 113637
doi: 10.1016/j.scriptamat.2020.113637
87 Wu P F, Gan K F, Yan D S, et al. The temperature dependence of deformation behaviors in high-entropy alloys: A review [J]. Metals, 2021, 11: 2005
doi: 10.3390/met11122005
88 Rizi M S, Minouei H, Lee B J, et al. Effects of carbon and molybdenum on the nanostructural evolution and strength/ductility trade-off in Fe40Mn40Co10Cr10 high-entropy alloys [J]. J. Alloys Compd., 2022, 911: 165108
doi: 10.1016/j.jallcom.2022.165108
89 Park H D, Won J W, Moon J, et al. Fe55Co17.5Ni10Cr12.5Mo5 high-entropy alloy with outstanding cryogenic mechanical properties driven by deformation-induced phase transformation behavior [J]. Met. Mater. Int., 2023, 29: 95
doi: 10.1007/s12540-022-01215-7
90 Jo Y H, Choi W M, Kim D G, et al. FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45Co x Ni35- x medium-entropy alloys [J]. Sci. Rep., 2019, 9: 2948
doi: 10.1038/s41598-019-39570-y pmid: 30814569
91 Kwon H, Moon J, Bae J W, et al. Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-entropy alloys at cryogenic temperature [J]. Scr. Mater., 2020, 188: 140
doi: 10.1016/j.scriptamat.2020.07.023
92 Wang Z W, Lu W J, Raabe D, et al. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions [J]. J. Alloys Compd., 2019, 781: 734
doi: 10.1016/j.jallcom.2018.12.061
93 Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
doi: 10.1016/j.actamat.2020.04.052
94 He Z F, Jia N, Wang H W, et al. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86: 158
doi: 10.1016/j.jmst.2020.12.079
95 Bae J W, Seol J B, Moon J, et al. Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures [J]. Acta Mater., 2018, 161: 388
doi: 10.1016/j.actamat.2018.09.057
96 Jo Y H, Choi W M, Kim D G, et al. Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy [J]. Mater. Sci. Eng., 2019, A743: 665
97 Du X H, Huo X F, Chang H T, et al. Superior strength-ductility combination of a Co-rich CoCrNiAlTi high-entropy alloy at room and cryogenic temperatures [J]. Mater. Res. Express, 2020, 7: 034001
98 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
99 Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range [J]. Acta Mater., 2017, 124: 143
doi: 10.1016/j.actamat.2016.11.016
100 Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures [J]. Mater. Res. Lett., 2022, 10: 602
doi: 10.1080/21663831.2022.2078169
101 Huo W Y, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures [J]. Scr. Mater., 2017, 141: 125
doi: 10.1016/j.scriptamat.2017.08.006
102 Chen J X, Li T, Chen Y, et al. Ultra-strong heavy-drawn eutectic high entropy alloy wire [J]. Acta Mater., 2023, 243: 118515
doi: 10.1016/j.actamat.2022.118515
103 Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nat. Commun., 2020, 11: 6240
doi: 10.1038/s41467-020-20109-z pmid: 33288762
104 Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z pmid: 32404913
105 Wang S D, Wang J H, Yang Y, et al. Ultrastrong interstitially-strengthened chemically complex martensite via tuning phase stability [J]. Scr. Mater., 2023, 226: 115257
doi: 10.1016/j.scriptamat.2022.115257
106 Chung H, Choi W S, Jun H, et al. Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy [J]. Nat. Commun., 2023, 14: 145
doi: 10.1038/s41467-023-35863-z pmid: 36627295
107 Liu X F, Tian Z L, Zhang X F, et al. "Self-sharpening" tungsten high-entropy alloy [J]. Acta Mater., 2020, 186: 257
doi: 10.1016/j.actamat.2020.01.005
108 Li Z, Zhao S, Diao H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure [J]. Sci. Rep., 2017, 7: 42742
doi: 10.1038/srep42742 pmid: 28210000
109 Jiao Z M, Ma S G, Chu M Y, et al. Superior mechanical properties of AlCoCrFeNiTi x high-entropy alloys upon dynamic loading [J]. J. Mater. Eng. Perform., 2016, 25: 451
doi: 10.1007/s11665-015-1869-3
110 Tang Y, Wang R X, Xiao B, et al. A review on the dynamic-mechanical behaviors of high-entropy alloys [J]. Prog. Mater. Sci., 2023, 135: 101090
doi: 10.1016/j.pmatsci.2023.101090
111 He J Y, Wang Q, Zhang H S, et al. Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy [J]. Sci. Bull., 2018, 63: 362
doi: 10.1016/j.scib.2018.01.022 pmid: 36658873
112 Li Z Z, Zhao S T, Alotaibi S M, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2018, 151: 424
doi: 10.1016/j.actamat.2018.03.040
113 Wang L, Qiao J W, Ma S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Mater. Sci. Eng., 2018, A727: 208
114 Qiao Y, Chen Y, Cao F H, et al. Dynamic behavior of CrMnFeCoNi high-entropy alloy in impact tension [J]. Int. J. Impact Eng., 2021, 158: 104008
doi: 10.1016/j.ijimpeng.2021.104008
115 Zhao S T, Li Z Z, Zhu C Y, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy [J]. Sci. Adv., 2021, 7: eabb3108
doi: 10.1126/sciadv.abb3108
116 Wang R X, Tang Y, Li S, et al. Research progress on deformation mechanisms under dynamic loading of high-entropy alloys [J]. Mater. Rep., 2021, 35: 17001
116 王睿鑫, 唐 宇, 李 顺 等. 高熵合金动态载荷下变形机制的研究进展 [J]. 材料导报. 2021, 35: 17001
117 Qin S, Yang M X, Liu Y K, et al. Superior dynamic shear properties and deformation mechanisms in a high entropy alloy with dual heterogeneous structures [J]. J. Mater. Res. Technol., 2022, 19: 3287
doi: 10.1016/j.jmrt.2022.06.074
118 Huang A M, Fensin S J, Meyers M A. Strain-rate effects and dynamic behavior of high entropy alloys [J]. J. Mater. Res. Technol., 2023, 22: 307
doi: 10.1016/j.jmrt.2022.11.057
119 Hu M L, Song W D, Duan D B, et al. Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures [J]. Int. J. Mech. Sci., 2020, 182: 105738
doi: 10.1016/j.ijmecsci.2020.105738
120 Qiao Y, Cao F H, Chen Y, et al. Impact tension behavior of heavy-drawn nanocrystalline CoCrNi medium entropy alloy wire [J]. Mater. Sci. Eng., 2022, A856: 144041
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[3] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[4] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[5] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[7] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[8] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[9] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[10] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[11] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[12] 曹富荣, 丁鑫, 项超, 尚会会. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 2021, 57(7): 860-870.
[13] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[14] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[15] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.