Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1159-1168    DOI: 10.11900/0412.1961.2021.00551
  研究论文 本期目录 | 过刊浏览 |
热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响
韩林至1, 牟娟1(), 周永康2, 朱正旺2, 张海峰2
1.东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy
HAN Linzhi1, MU Juan1(), ZHOU Yongkang2, ZHU Zhengwang2, ZHANG Haifeng2
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
Linzhi HAN, Juan MU, Yongkang ZHOU, Zhengwang ZHU, Haifeng ZHANG. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. Acta Metall Sin, 2022, 58(9): 1159-1168.

全文: PDF(3779 KB)   HTML
摘要: 

制备了一种中等密度(约8.0 g/cm3)的难熔高熵合金Ti0.5Zr1.5NbTa0.5Sn0.2 (摩尔比),系统研究了热处理温度对合金组织结构和力学性能的影响。结果表明:铸态Ti0.5Zr1.5NbTa0.5Sn0.2合金组织为富Zr和富Ta bcc相以及晶内的板条状Zr5Sn3。随着热处理温度升高,富Ta bcc相体积分数逐渐减少,Zr5Sn3体积分数先增加后减少。当热处理温度为1400℃时,样品呈现近单相bcc结构。准静态条件下,系列样品均具有良好的压缩塑性变形能力;随着热处理温度的提高,合金屈服强度逐渐上升,1400℃热处理样品的屈服强度为1749 MPa。动态变形时,合金表现出明显的应变率强化效应,屈服强度显著增加,1400℃热处理样品的屈服强度达到2750 MPa,塑性变形量有所下降。强度随热处理温度提升的原因是9.8%的平均原子尺寸差带来了显著的固溶强化效果。

关键词 难熔高熵合金热处理力学性能固溶强化    
Abstract

Refractory high-entropy alloys (RHEAs) have great application potential in extreme conditions due to their outstanding high-temperature properties. However, several issues, such as high density, poor room temperature plasticity, and high cost limit their practical application. A new Ti0.5Zr1.5NbTa0.5Sn0.2 (molar ratio) RHEA with a medium density of approximately 8.0 g/cm3 was prepared to address the aforementioned issues; the effects of heat treatment temperature on the alloy's microstructure and mechanical properties were systematically examined. The findings indicate that as-cast Ti0.5Zr1.5NbTa0.5Sn0.2 RHEA contains Zr-rich and Ta-rich bcc phases and lath-like Zr5Sn3 intermetallics in the crystal. The volume fraction of the Ta-rich bcc phase gradually decreases with the increase in heat treatment temperature, and Zr5Sn3 intermetallic first increases and then decreases. The sample presents a near single-phase bcc structure when the heat treatment temperature is 1400oC. A series of samples have good compressive plastic deformation ability under quasi-static conditions, and the alloy's yield strength increased gradually with an increasing heat treatment temperature. The sample's yield strength quenched at 1400oC is as high as 1749 MPa. The alloy showed strain rate strengthening effect under dynamic loading, and the yield strength significantly increased. The sample's yield strength quenched at 1400oC reaches 2750 MPa; however, the plastic deformation ability is reduced. The reason why the strength increases with the heat treatment temperature is that the 9.8% average atomic size difference results in a significant solid solution strengthening effect.

Key wordsrefractory high-entropy alloy    heat treatment    mechanical property    solid solution strengthening
收稿日期: 2021-12-13     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51771049);国家自然科学基金项目(51790484);冲击环境材料技术重点实验室基金项目(JCKYS20-20602005)
作者简介: 韩林至,男,1997年生,硕士生
图1  不同状态Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金的XRD谱
图2  不同状态Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金的bcc相晶格常数
图3  不同状态Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金的微观形貌
图4  不同状态Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金的EDS面分布图
StateRegionAtomic fraction / %
TiZrNbTaSn
As-castNominal14.543.324.211.86.2
bcc115.550.819.87.66.3
bcc213.025.835.623.42.1
800oCLath13.645.522.19.99.0
bcc116.153.318.96.45.3
bcc213.726.334.923.81.9
1000oCLath15.950.520.27.85.6
bcc116.551.820.27.85.6
bcc213.723.836.824.51.3
1200oCLath13.443.722.610.99.4
bcc115.346.423.410.14.8
bcc213.823.436.225.01.6
1400oCLath7.153.59.44.126.1
bcc114.543.324.311.76.3
bcc213.725.635.522.82.5
表1  不同状态Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金不同位置的EDS结果
图5  Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金准静态压缩性能
图6  不同状态Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金的准静态压缩侧面形貌
图7  Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金动态压缩性能
图8  Ti0.5Zr1.5NbTa0.5Sn0.2高熵合金在2.5 × 103 s-1应变速率范围内的断口形貌
ElementTiZrNbTaSn
Ti-----
Zr0----
Nb24---
Ta130--
Sn-21-43-1-3-
表2  Ti、Zr、Nb、Ta、Sn二元合金的混合焓(ΔHmix)[25] (kJ·mol-1)
1 Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf. Coat. Technol., 2004, 188-189: 193
doi: 10.1016/j.surfcoat.2004.08.023
2 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
4 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
5 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
6 Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy [J]. Acta Mater., 2014, 65: 85
doi: 10.1016/j.actamat.2013.11.049
7 Chen J, Zhou X Y, Wang W L, et al. A review on fundamental of high entropy alloys with promising high-temperature properties [J]. J. Alloys Compd., 2018, 760: 15
doi: 10.1016/j.jallcom.2018.05.067
8 Chen G, Luo T, Shen S C, et al. Research progress in refractory high-entropy alloys [J]. Mater. Rep., 2021, 35: 17064
8 陈 刚, 罗 涛, 沈书成 等. 难熔高熵合金的研究进展 [J]. 材料导报, 2021, 35: 17064
9 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
doi: 10.1557/jmr.2018.153
10 Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
10 李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
11 Yang S F, Wen J N, Mo J, et al. Microstructure and strengthening mechanisms in FCC-structured single-phase TiC-CoCrFeCuNiAl0.3 HEACs with deformation twinning [J]. Mater. Sci. Eng., 2021, A814: 141215
12 Yang S F, Zhang Y, Yan X, et al. Deformation twins and interface characteristics of nano-Al2O3 reinforced Al0.4FeCrCo1.5NiTi0.3 high entropy alloy composites [J]. Mater. Chem. Phys., 2018, 210: 240
doi: 10.1016/j.matchemphys.2017.11.037
13 An Z B, Mao S C, Liu Y N, et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79: 109
doi: 10.1016/j.jmst.2020.10.073
14 Hu Y M, Liu X D, Guo N N, et al. Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys [J]. Rare Met, 2019, 38: 840
doi: 10.1007/s12598-019-01310-6
15 Hu M l, Song W D, Duan D B, et al. Dynamic behavior and microstructure characterization of TaNbHfZrTi high-entropy alloy at a wide range of strain rates and temperatures [J]. Int. J. Mech. Sci., 2020, 182: 105738
doi: 10.1016/j.ijmecsci.2020.105738
16 Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy [J]. Mater. Sci. Eng., 2016, A654: 30
17 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
doi: 10.1016/j.jallcom.2011.02.171
18 Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working [J]. J. Alloys Compd., 2015, 649: 1110
doi: 10.1016/j.jallcom.2015.07.209
19 Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy [J]. Mater. Des., 2019, 162: 256.
doi: 10.1016/j.matdes.2018.11.052
20 Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory high-entropy alloys [J]. JOM, 2014, 66: 2030
doi: 10.1007/s11837-014-1066-0
21 Voyiadjis G Z, Abed F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency [J]. Mech. Mater., 2005, 37: 355
doi: 10.1016/j.mechmat.2004.02.003
22 Chen H H, Zhang X F, Liu C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explos. Shock Waves, 2021, 41: 041402
22 陈海华, 张先锋, 刘 闯 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41: 041402
23 Dirras G, Couque H, Lilensten L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Mater. Charact., 2016, 111: 106
doi: 10.1016/j.matchar.2015.11.018
24 Zhang Z R, Zhang H, Tang Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Mater. Des., 2017, 133: 435
doi: 10.1016/j.matdes.2017.08.022
25 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
26 Wu Y D, Si J J, Lin D Y, et al. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys [J]. Mater. Sci. Eng., 2018, A724: 249
27 Yu Q, Chen Y J, Fang Y. Heterogeneity in chemical distribution and its impact in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 393
27 余 倩, 陈雨洁, 方 研. 高熵合金中的元素分布规律及其作用 [J]. 金属学报, 2021, 57: 393
28 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534.
doi: 10.1002/adem.200700240
29 Wen C, Mo W W, Tian Y W, et al. Research progress on solid solution strengthening of high entropy alloys [J]. Mater. Rep., 2021, 35: 17081
29 文 成, 莫湾湾, 田玉琬 等. 高熵合金固溶强化问题的研究进展 [J]. 材料导报, 2021, 35: 17081
30 Yang Y, He Q F. Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
30 杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.