Please wait a minute...
金属学报  2021, Vol. 57 Issue (4): 403-412    DOI: 10.11900/0412.1961.2020.00494
  综述 本期目录 | 过刊浏览 |
纳米晶合金热稳定性的熵调控设计
王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊(), 蒋虽合, 刘雄军, 王辉(), 吕昭平
北京科技大学 新金属材料国家重点实验室 北京 100083
Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects
WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan(), JIANG Suihe, LIU Xiongjun, WANG Hui(), LU Zhaoping
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
Yihan WANG, Yuan YUAN, Jiabin YU, Honghui WU, Yuan WU, Suihe JIANG, Xiongjun LIU, Hui WANG, Zhaoping LU. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. Acta Metall Sin, 2021, 57(4): 403-412.

全文: PDF(1618 KB)   HTML
摘要: 

具有纳米尺度晶粒的纳米晶合金由于具有高强度和高硬度而成为材料领域的关注热点,然而,由于晶界占比高,纳米晶合金的热稳定性差,严重制约了在高温甚至室温下的应用。近年来,纳米晶高熵合金由于显著的高熵效应而展现出特殊性能,这一效应同时能在一定程度上缓解纳米晶在较高温度下的低热稳定性问题。本文通过对纳米晶合金常用的热稳定策略和相关研究进展的分析与归纳,探讨从熵调控的角度利用多组元的高熵效应设计的具有高热稳定性的纳米晶高熵合金的稳定机理和力学性能。已有研究结果表明,纳米晶高熵合金有望拓宽纳米晶合金的领域,同时可为突破纳米晶合金低热稳定性瓶颈提供新的思路。

关键词 高熵合金纳米晶合金热稳定性高熵效应    
Abstract

Nanocrystalline alloys (NAs) with nano-sized fine grains and high density of grain boundaries exhibit promising properties, such as high strength and hardness. However, industrial applications of NAs at high or even room temperature have been limited, owing to their thermal instability, which originates from the high proportion of grain boundaries in NAs. Recently, nanocrystalline high-entropy alloys (NC-HEAs) have emerged and have been rapidly developed, which are expected to alleviate thermal instability. In this study, design strategies for the thermal stability of NC-HEAs and related progress are investigated and summarized. In addition, the underlying mechanism for the high thermal stability of NC-HEAs is discussed by utilizing high-entropy effects, based on entropy engineering. These high-entropy design strategies may provide a new methodology for dramatically increasing the thermal stability of NAs.

Key wordshigh-entropy alloy    nanocrystalline alloy    thermal stability    high-entropy effect
收稿日期: 2020-12-07     
ZTFLH:  TG430.40  
基金资助:国家自然科学基金项目(51921001);北京科技大学新金属材料国家重点实验室自主项目(2019Z-01)
作者简介: 王一涵,女,1997年生,硕士生
图1  从单晶金属到纳米晶合金再到纳米晶高熵合金的结构示意图[19]
图2  利用“熵工程”思路设计稳定的双相纳米晶AlCoCuNi高熵合金[30]
图3  通过“熵工程”思路设计超高硬度的纳米晶体-非晶双相FeCoNiCrMn高熵合金薄膜[31]
图4  450℃等温热处理下不同晶粒尺寸FeCoNiCrMn合金的的Young's模量与硬度,以及各阶段的三维原子探针形貌演变图[61]
1 Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
2 Gleiter H. Nanostructured materials: Basic concepts and microstructure [J]. Acta Mater., 2000, 48: 1
3 Suryanarayana C, Koch C C. Nanocrystalline materials—Current research and future directions [J]. Hyperfine Interact., 2000, 130: 5
4 Belova I V, Murch G E. Diffusion in nanocrystalline materials [J]. J. Phys. Chem. Solids, 2003, 64: 873
5 Palumbo G, Thorpe S J, Aust K T. On the contribution of triple junctions to the structure and properties of nanocrystalline materials [J]. Scr. Metall. Mater., 1990, 24: 1347
6 Cantwell P R, Tang M, Dillon S J, et al. Grain boundary complexions [J]. Acta Mater., 2014, 62: 1
7 Ames M, Markmann J, Karos R, et al. Unraveling the nature of room temperature grain growth in nanocrystalline materials [J]. Acta Mater., 2008, 56: 4255
8 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
9 Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
10 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
11 Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys [J]. Mater. Sci. Eng., 2015, A642: 142
12 Zhou Y J, Zhang Y, Wang F J, et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1-xsolid-solution alloys [J]. Appl. Phys. Lett., 2008, 92: 241917
13 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
14 Lu Z P, Wang H, Chen M W, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop [J]. Intermetallics, 2015, 66: 67
15 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
16 Laktionova M A, Tabchnikova E D, Tang Z, et al. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2-300 K [J]. J. Low Temp. Phys., 2013, 39: 630
17 Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions [J]. Mater. Sci. Eng., 2012, A533: 107
18 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
19 Haché M J R, Cheng C J, Zou Y. Nanostructured high-entropy materials [J]. J. Mater. Res., 2020, 35: 1051
20 Koch C C, Scattergood R O, Saber M, et al. High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies [J]. J. Mater. Res., 2013, 28: 1785
21 Gottstein G, Shvindlerman L S. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications [M]. 2nd Ed., Boca Raton, FL: CRC Press, 2010: 1
22 Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3: 261
23 Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation [J]. J. Cryst. Growth, 2004, 264: 385
24 Hondros E D, Seah M P. The theory of grain boundary segregation in terms of surface adsorption analogues [J]. Metall. Trans., 1977, 8A: 1363
25 Chen Y Z, Herz A, Li Y J, et al. Nanocrystalline Fe-C alloys produced by ball milling of iron and graphite [J]. Acta Mater., 2013, 61: 3172
26 Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50: 413
27 Lei Z F, Liu X J, Wang H, et al. Development of advanced materials via entropy engineering [J]. Scr. Mater., 2019, 165: 164
28 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
29 He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
30 Deng H W, Xie Z M, Wang M M, et al. A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and boundary engineering [J]. Mater. Sci. Eng., 2020, A774: 138925
31 Xiao L L, Zheng Z Q, Guo S W, et al. Ultra-strong nanostructured CrMnFeCoNi high entropy alloys [J]. Mater. Des., 2020, 194: 108895
32 Cahn J W. The impurity-drag effect in grain boundary motion [J]. Acta Metall., 1962, 10: 789
33 Lücke K, Detert K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities [J]. Acta Metall., 1957, 5: 628
34 Michels A, Krill C E, Ehrhardt H, et al. Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials [J]. Acta Mater., 1999, 47: 2143
35 Rabkin E. On the grain size dependent solute and particle drag [J]. Scr. Mater., 2000, 42: 1199
36 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Oxford: Pergamon, 2004: 557
37 Rupp J L M, Infortuna A, Gauckler L J. Microstrain and self-limited grain growth in nanocrystalline ceria ceramics [J]. Acta Mater., 2006, 54: 1721
38 Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu [J]. Mater. Des., 2013, 50: 22
39 Zuo B, Sritharan T. Ordering and grain growth in nanocrystalline Fe75Si25 alloy [J]. Acta Mater., 2005, 53: 1233
40 Bansal C, Gao Z Q, Fultz B. Grain growth and chemical ordering in (Fe, Mn)3Si [J]. Nanostruct. Mater., 1995, 5: 327
41 Cottrell A H, Jaswon M A. Distribution of solute atoms round a slow dislocation [J]. Proc. R. Soc. London, 1949, 199A: 104
42 Hillert M, Sundman B. A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys [J]. Acta Metall., 1976, 24: 731
43 Verhasselt J C, Gottstein G, Molodov D A, et al. Shape of moving grain boundaries in Al-bicrystals [J]. Acta Mater., 1999, 47: 887
44 Heo T W, Bhattacharyya S, Chen L Q. A phase field study of strain energy effects on solute-grain boundary interactions [J]. Acta Mater., 2011, 59: 7800
45 Xiao Y, Zou Y, Ma H, et al. Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness [J]. Scr. Mater., 2019, 168: 51
46 Gottstein G, Shvindlerman L S. Theory of grain boundary motion in the presence of mobile particles [J]. Acta Metall. Mater., 1993, 41: 3267
47 Chen Z, Liu F, Yang X Q, et al. A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition [J]. J. Alloys Compd., 2014, 608: 338
48 Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions [J]. Acta Mater., 2018, 147: 213
49 Wang J J, Wu S S, Fu S, et al. Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation [J]. Scr. Mater., 2020, 187: 335
50 Molinari A, Libardi S, Leoni M, et al. Role of lattice strain on thermal stability of a nanocrystalline FeMo alloy [J]. Acta Mater., 2010, 58: 963
51 Lu L, Li S X, Lu K. An abnormal strain rate effect on tensile behavior in nanocrystalline copper [J]. Scr. Mater., 2001, 45: 1163
52 Gao Z Q, Fultz B. Thermal stability of Fe3Si-based nanocrystals [J]. Hyperfine Interact., 1994, 94: 2213
53 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
54 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
55 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
56 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
57 Zhou N X, Hu T, Huang J J, et al. Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions [J]. Scr. Mater., 2016, 124: 160
58 Zhou N X, Hu T, Luo J. Grain boundary complexions in multicomponent alloys: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 268
59 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
60 Varalakshmi S, Kamaraj M, Murty B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J]. J. Alloys Compd., 2008, 460: 253
61 Maier-Kiener V, Schuh B, George E P, et al. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys [J]. Mater. Des., 2017, 115: 479
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[6] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[7] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[8] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[9] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[10] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[11] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[12] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[13] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[15] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.