|
|
纳米晶合金热稳定性的熵调控设计 |
王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊( ), 蒋虽合, 刘雄军, 王辉( ), 吕昭平 |
北京科技大学 新金属材料国家重点实验室 北京 100083 |
|
Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects |
WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan( ), JIANG Suihe, LIU Xiongjun, WANG Hui( ), LU Zhaoping |
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
Yihan WANG,
Yuan YUAN,
Jiabin YU,
Honghui WU,
Yuan WU,
Suihe JIANG,
Xiongjun LIU,
Hui WANG,
Zhaoping LU.
Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. Acta Metall Sin, 2021, 57(4): 403-412.
1 |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
|
2 |
Gleiter H. Nanostructured materials: Basic concepts and microstructure [J]. Acta Mater., 2000, 48: 1
|
3 |
Suryanarayana C, Koch C C. Nanocrystalline materials—Current research and future directions [J]. Hyperfine Interact., 2000, 130: 5
|
4 |
Belova I V, Murch G E. Diffusion in nanocrystalline materials [J]. J. Phys. Chem. Solids, 2003, 64: 873
|
5 |
Palumbo G, Thorpe S J, Aust K T. On the contribution of triple junctions to the structure and properties of nanocrystalline materials [J]. Scr. Metall. Mater., 1990, 24: 1347
|
6 |
Cantwell P R, Tang M, Dillon S J, et al. Grain boundary complexions [J]. Acta Mater., 2014, 62: 1
|
7 |
Ames M, Markmann J, Karos R, et al. Unraveling the nature of room temperature grain growth in nanocrystalline materials [J]. Acta Mater., 2008, 56: 4255
|
8 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
9 |
Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
|
10 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
11 |
Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys [J]. Mater. Sci. Eng., 2015, A642: 142
|
12 |
Zhou Y J, Zhang Y, Wang F J, et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1-xsolid-solution alloys [J]. Appl. Phys. Lett., 2008, 92: 241917
|
13 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
|
14 |
Lu Z P, Wang H, Chen M W, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop [J]. Intermetallics, 2015, 66: 67
|
15 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
|
16 |
Laktionova M A, Tabchnikova E D, Tang Z, et al. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2-300 K [J]. J. Low Temp. Phys., 2013, 39: 630
|
17 |
Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions [J]. Mater. Sci. Eng., 2012, A533: 107
|
18 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
19 |
Haché M J R, Cheng C J, Zou Y. Nanostructured high-entropy materials [J]. J. Mater. Res., 2020, 35: 1051
|
20 |
Koch C C, Scattergood R O, Saber M, et al. High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies [J]. J. Mater. Res., 2013, 28: 1785
|
21 |
Gottstein G, Shvindlerman L S. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications [M]. 2nd Ed., Boca Raton, FL: CRC Press, 2010: 1
|
22 |
Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3: 261
|
23 |
Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation [J]. J. Cryst. Growth, 2004, 264: 385
|
24 |
Hondros E D, Seah M P. The theory of grain boundary segregation in terms of surface adsorption analogues [J]. Metall. Trans., 1977, 8A: 1363
|
25 |
Chen Y Z, Herz A, Li Y J, et al. Nanocrystalline Fe-C alloys produced by ball milling of iron and graphite [J]. Acta Mater., 2013, 61: 3172
|
26 |
Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50: 413
|
27 |
Lei Z F, Liu X J, Wang H, et al. Development of advanced materials via entropy engineering [J]. Scr. Mater., 2019, 165: 164
|
28 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
29 |
He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
|
30 |
Deng H W, Xie Z M, Wang M M, et al. A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and boundary engineering [J]. Mater. Sci. Eng., 2020, A774: 138925
|
31 |
Xiao L L, Zheng Z Q, Guo S W, et al. Ultra-strong nanostructured CrMnFeCoNi high entropy alloys [J]. Mater. Des., 2020, 194: 108895
|
32 |
Cahn J W. The impurity-drag effect in grain boundary motion [J]. Acta Metall., 1962, 10: 789
|
33 |
Lücke K, Detert K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities [J]. Acta Metall., 1957, 5: 628
|
34 |
Michels A, Krill C E, Ehrhardt H, et al. Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials [J]. Acta Mater., 1999, 47: 2143
|
35 |
Rabkin E. On the grain size dependent solute and particle drag [J]. Scr. Mater., 2000, 42: 1199
|
36 |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Oxford: Pergamon, 2004: 557
|
37 |
Rupp J L M, Infortuna A, Gauckler L J. Microstrain and self-limited grain growth in nanocrystalline ceria ceramics [J]. Acta Mater., 2006, 54: 1721
|
38 |
Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu [J]. Mater. Des., 2013, 50: 22
|
39 |
Zuo B, Sritharan T. Ordering and grain growth in nanocrystalline Fe75Si25 alloy [J]. Acta Mater., 2005, 53: 1233
|
40 |
Bansal C, Gao Z Q, Fultz B. Grain growth and chemical ordering in (Fe, Mn)3Si [J]. Nanostruct. Mater., 1995, 5: 327
|
41 |
Cottrell A H, Jaswon M A. Distribution of solute atoms round a slow dislocation [J]. Proc. R. Soc. London, 1949, 199A: 104
|
42 |
Hillert M, Sundman B. A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys [J]. Acta Metall., 1976, 24: 731
|
43 |
Verhasselt J C, Gottstein G, Molodov D A, et al. Shape of moving grain boundaries in Al-bicrystals [J]. Acta Mater., 1999, 47: 887
|
44 |
Heo T W, Bhattacharyya S, Chen L Q. A phase field study of strain energy effects on solute-grain boundary interactions [J]. Acta Mater., 2011, 59: 7800
|
45 |
Xiao Y, Zou Y, Ma H, et al. Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness [J]. Scr. Mater., 2019, 168: 51
|
46 |
Gottstein G, Shvindlerman L S. Theory of grain boundary motion in the presence of mobile particles [J]. Acta Metall. Mater., 1993, 41: 3267
|
47 |
Chen Z, Liu F, Yang X Q, et al. A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition [J]. J. Alloys Compd., 2014, 608: 338
|
48 |
Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions [J]. Acta Mater., 2018, 147: 213
|
49 |
Wang J J, Wu S S, Fu S, et al. Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation [J]. Scr. Mater., 2020, 187: 335
|
50 |
Molinari A, Libardi S, Leoni M, et al. Role of lattice strain on thermal stability of a nanocrystalline FeMo alloy [J]. Acta Mater., 2010, 58: 963
|
51 |
Lu L, Li S X, Lu K. An abnormal strain rate effect on tensile behavior in nanocrystalline copper [J]. Scr. Mater., 2001, 45: 1163
|
52 |
Gao Z Q, Fultz B. Thermal stability of Fe3Si-based nanocrystals [J]. Hyperfine Interact., 1994, 94: 2213
|
53 |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
|
54 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
|
55 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
|
56 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
|
57 |
Zhou N X, Hu T, Huang J J, et al. Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions [J]. Scr. Mater., 2016, 124: 160
|
58 |
Zhou N X, Hu T, Luo J. Grain boundary complexions in multicomponent alloys: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 268
|
59 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
60 |
Varalakshmi S, Kamaraj M, Murty B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J]. J. Alloys Compd., 2008, 460: 253
|
61 |
Maier-Kiener V, Schuh B, George E P, et al. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys [J]. Mater. Des., 2017, 115: 479
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|