Please wait a minute...
金属学报  2023, Vol. 59 Issue (8): 1051-1064    DOI: 10.11900/0412.1961.2021.00517
  研究论文 本期目录 | 过刊浏览 |
FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟
张海峰1, 闫海乐1, 方烽2, 贾楠1()
1东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars
ZHANG Haifeng1, YAN Haile1, FANG Feng2, JIA Nan1()
1Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
Haifeng ZHANG, Haile YAN, Feng FANG, Nan JIA. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. Acta Metall Sin, 2023, 59(8): 1051-1064.

全文: PDF(5235 KB)   HTML
摘要: 

为了揭示高熵合金中晶界对塑性变形机制的影响,利用分子动力学模拟方法研究了具有不同初始取向组合的等主元FeMnCoCrNi高熵合金双晶在单轴拉伸变形中的力学性能与变形系统演化,并揭示了晶界与拉伸方向的位向关系对高熵合金力学行为的影响。结果表明,对研究的所有双晶模型而言,位错优先在晶界处形核并向两侧的晶粒内滑移。在变形过程中,晶界发生了不同程度的宽化和弯曲。当晶界与拉伸方向垂直时,颈缩易于在晶界处发生,这导致双晶的流变应力随外加载荷增大而降低。而当晶界平行于拉伸方向时,在整个塑性变形过程中模型保持1 GPa以上的流变应力。相对于其他双晶而言,[111]与[110]取向组合的双晶流变应力波动幅度最大,同时呈现出最强的加工硬化能力。其中应力的下降归因于大量的位错发生了滑移,而高的硬化能力则是由较多的ε-马氏体、层错以及孪晶形成所致。此外,还对比了FeMnCoCrNi、FeCuCoCrNi和纯Cu 3种材料的变形行为。与Cu相比,FeMnCoCrNi和FeCuCoCrNi高熵合金中的晶格畸变使晶界更加粗糙,这使得外加载荷作用下位错易于形核,且层错能较低的FeMnCoCrNi中形成的ε-马氏体最多。

关键词 高熵合金双晶晶界塑性变形机制原子模拟    
Abstract

High-entropy alloys (HEAs) have attracted considerable research attention in the material field because of their outstanding mechanical properties. For metallic materials, grain boundary plays a crucial role in the mechanical behavior and plastic deformation mechanisms. To show the effect of grain boundary on deformation mechanisms in HEAs, the mechanical behavior and evolution of deformation systems in the equiatomic FeMnCoCrNi HEA bicrystals with various orientation combinations during uniaxial tension are investigated using molecular dynamic simulations, and the effect of the orientation relationship between the grain boundary and tensile direction on mechanical behavior is demonstrated. The findings reveal that for all models studied, dislocations nucleate preferentially at the grain boundary and slip into the grains on both sides. Grain boundaries are widened and curved during deformation. Necking tends to occur at the grain boundary when the grain boundary is perpendicular to the tensile direction, which decreases flow stress with increasing loading. For the model with a grain boundary parallel to the deformation direction, the model's flow stress remains at a level above 1 GPa during the whole plastic deformation. The bicrystal with a combination of [111] and [110] orientations shows the most significant fluctuation of flow stress and the highest work hardening ability compared with other models. The decrease in stress with deformation is due to the slip of numerous dislocations, while the high strain hardening ability is caused by the formation of ε-martensite, stacking faults, and twins. Furthermore, the deformation behavior of FeMnCoCrNi, FeCuCoCrNi HEAs, and pure Cu are compared. Compared with Cu, the larger lattice distortion in FeMnCoCrNi and FeCuCoCrNi HEAs makes the grain boundaries coarser, which makes dislocations easy to nucleate under loading, and the formation of ε-martensite is the most outstanding in FeMnCoCrNi HEA with a lower stacking fault energy. The results of this study can guide the design of microstructures and orientations in high-performance HEAs with micron- and nanoscaled grains.

Key wordshigh-entropy alloy    bicrystal    grain boundary    plastic deformation mechanism    atomic simulation
收稿日期: 2021-11-29     
ZTFLH:  TG113.25  
基金资助:国家自然科学基金项目(51922026);中央高校基本科研业务费项目(N2002005);中央高校基本科研业务费项目(N2007011);高等学校创新引智计划项目(B20029)
通讯作者: 贾 楠,jian@atm.neu.edu.cn,主要从事金属材料微观力学行为研究
Corresponding author: JIA Nan, professor, Tel:(024)83691570, E-mail: jian@atm.neu.edu.cn
作者简介: 张海峰,男,1994年生,博士生
图1  单轴拉伸载荷下的双晶微柱模型示意图
图2  [110]取向下不同晶粒尺寸FeMnCoCrNi单晶的应力-应变曲线和相应不同形变系统的体积分数随应变的演化
图3  晶界与拉伸方向垂直时不同取向组合双晶的应力-应变曲线
Crystal typeOrientationStress / GPa
Single crystal[001]5.13
[110]4.11
[111]7.43
[123]4.43
Bicrystal[001] + [110]3.59
[001] + [111]5.12
[001] + [123]3.80
[111] + [110]2.33
[123] + [110]3.70
[111] + [123]4.30
表1  晶界与拉伸方向垂直时单晶与双晶在弹塑性转变点处的应力
图4  晶界与拉伸方向垂直时不同取向组合的FeMnCoCrNi双晶在弹塑性转变点处的原子结构和位错线分布
图5  应变为20%时[111] + [110]双晶模型的原子结构
图6  晶界与拉伸方向垂直时不同取向组合的FeMnCoCrNi双晶在45%工程应变时的原子结构和位错线分布
图7  当晶界与拉伸方向平行时不同取向组合双晶的应力-应变曲线
Crystal typeOrientationStress / GPa
Single crystal[001]5.13
[110]4.11
[111]7.43
[123]4.43
Bicrystal[001] + [110]3.62
[001] + [111]6.03
[001] + [123]3.83
[111] + [110]3.87
[123] + [110]3.72
[111] + [123]5.28
表2  当晶界与拉伸方向平行时单晶与双晶在弹塑性转变点处的应力
图8  晶界与拉伸方向平行时不同取向组合的FeMnCoCrNi双晶在弹塑性转变点处的原子结构和位错线分布
图9  晶界与拉伸方向平行时不同取向组合的FeMnCoCrNi双晶在100%工程应变时的原子结构和位错线分布
图10  FeMnCoCrNi、FeCuCoCrNi和Cu双晶晶界处的原子结构和原子势能分布
图11  晶界与拉伸方向垂直时FeMnCoCrNi、FeCuCoCrNi和Cu双晶的应力-应变曲线及原子结构
图12  晶界与拉伸方向平行时FeMnCoCrNi、FeCuCoCrNi和Cu双晶的应力-应变曲线及原子结构
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
2 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
3 Huang T D, Wu S Y, Jiang H, et al. Effect of Ti content on microstructure and properties of Ti x ZrVNb refractory high-entropy alloys [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1318
doi: 10.1007/s12613-020-2040-1
4 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
5 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
6 Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy [J]. Corros. Sci., 2020, 164: 108315
doi: 10.1016/j.corsci.2019.108315
7 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
8 He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
doi: 10.1016/j.ijplas.2021.102965
9 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
10 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
doi: 10.1007/s11837-013-0761-6
11 Yang Y, He Q F. Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
doi: 10.11900/0412.1961.2020.00359
11 杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
12 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
13 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
14 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
15 Sohn S S, Kwiatkowski da Silva A, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
16 Fang W, Yu H Y, Chang R B, et al. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration [J]. Mater. Chem. Phys., 2019, 238: 121897
doi: 10.1016/j.matchemphys.2019.121897
17 He Z F, Jia N, Wang H W, et al. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86: 158
doi: 10.1016/j.jmst.2020.12.079
18 Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
18 王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
19 He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
20 Li L L, Li Z M, Kwiatkowski da Silva A, et al. Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy [J]. Acta Mater., 2019, 178: 1
doi: 10.1016/j.actamat.2019.07.052
21 Zhang H F, Yan H L, Yu H, et al. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48: 146
doi: 10.1016/j.jmst.2020.03.010
22 Zhang H F, Yan H L, Fang F, et al. Reverse transformation in [110]-oriented face-centered-cubic single crystals studied by atomic simulations [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1631
doi: 10.1007/s40195-022-01397-4
23 Farkas D, Caro A. Model interatomic potentials and lattice strain in a high-entropy alloy [J]. J. Mater. Res., 2018, 33: 3218
doi: 10.1557/jmr.2018.245
24 Li Z M, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Sci. Rep., 2017, 7: 40704
doi: 10.1038/srep40704 pmid: 28079175
25 Zhang H F, Yan H L, Fang F, et al. Orientation-dependent mechanical responses and plastic deformation mechanisms of FeMnCoCrNi high-entropy alloy: A molecular dynamics study [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1511
doi: 10.1007/s40195-021-01260-y
26 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
27 Misra A, Thilly L, Editors G. Structural metals at extremes [J]. MRS Bull., 2010, 35: 965
doi: 10.1016/S0025-5408(00)00281-6
28 Kumar K S, van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Mater., 2003, 51: 5743
doi: 10.1016/j.actamat.2003.08.032
29 Yuasa M, Nakazawa T, Mabuchi M. Atomic simulations of dislocation emission from Cu/Cu and Co/Cu grain boundaries [J]. Mater. Sci. Eng., 2010, A528: 260
30 Yuasa M, Nakazawa T, Mabuchi M. Atomic simulation of grain boundary sliding in Co/Cu two-phase bicrystals [J]. Mater. Sci. Eng., 2010, A527: 2629
31 Tan F S, Li J, Feng H, et al. Entropy-induced transition on grain-boundary migration in multi-principal element alloys [J]. Scr. Mater., 2021, 194: 113668
doi: 10.1016/j.scriptamat.2020.113668
32 Lee H, Shabani M, Pataky G J, et al. Tensile deformation behavior of twist grain boundaries in CoCrFeMnNi high entropy alloy bicrystals [J]. Sci. Rep., 2021, 11: 428
doi: 10.1038/s41598-020-77487-z pmid: 33431909
33 Choi W M, Jo Y H, Sohn S S, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study [J]. npj Comput. Mater., 2018, 4: 1
doi: 10.1038/s41524-017-0060-9
34 Kim Y M, Lee B J. A semi-empirical interatomic potential for the Cu-Ti binary system [J]. Mater. Sci. Eng., 2007, A449-451: 733
35 Li W, Lu S, Hu Q M, et al. Generalized stacking fault energies of alloys [J]. J. Phys. Condens. Matter, 2014, 26: 265005
doi: 10.1088/0953-8984/26/26/265005
36 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
37 Stukowski A. Sualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 015012
38 Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood [J]. Comput. Phys. Commun., 2007, 177: 518
doi: 10.1016/j.cpc.2007.05.018
39 Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 085001
40 Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J]. Scr. Mater., 2015, 108: 44
doi: 10.1016/j.scriptamat.2015.05.041
41 Pei Z R. An overview of modeling the stacking faults in lightweight and high-entropy alloys: Theory and application [J]. Mater. Sci. Eng., 2018, A737: 132
42 Tong Y, Jin K, Bei H, et al. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction [J]. Mater. Des., 2018, 155: 1
doi: 10.1016/j.matdes.2018.05.056
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[6] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[7] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[8] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[9] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[10] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[11] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[12] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[13] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[14] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.