|
|
深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展 |
张滨1, 田达1, 宋竹满2, 张广平2( ) |
1东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 2中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible |
ZHANG Bin1, TIAN Da1, SONG Zhuman2, ZHANG Guangping2( ) |
1Key Laboratory for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shengyang 110819, China 2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
Bin ZHANG,
Da TIAN,
Zhuman SONG,
Guangping ZHANG.
Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. Acta Metall Sin, 2023, 59(6): 713-726.
1 |
Zhang E, Zhu X L, Jing T, et al. Research status and development trend of pressure resistant structure of deep submersibles [J]. J. Ship Mech., 2021, 25: 1427
|
1 |
张 二, 朱显玲, 荆 腾 等. 深潜器耐压结构研究现状及发展趋势(英文) [J]. 船舶力学, 2021, 25: 1427
|
2 |
Yang S L, Song D J, Gao F Y, et al. Effects of slab microstructure type and heat treatment on mechanical properties anisotropy of Ti6321 alloy plate [J]. Chin. J. Nonferrous Met., 2020, 30: 1358
|
2 |
杨胜利, 宋德军, 高福洋 等. 板坯组织类型及热处理对Ti6321合金板材力学性能各向异性的影响 [J]. 中国有色金属学报, 2020, 30: 1358
|
3 |
Wang F, Cui W C. Experimental investigation on dwell-fatigue property of Ti-6Al-4V ELI used in deep-sea manned cabin [J]. Mater. Sci. Eng., 2015, A642: 136
|
4 |
Dong Y C, Fang Z G, Chang H, et al. Service performance of titanium alloy in marine environment [J]. Mater. China, 2020, 39: 185
|
4 |
董月成, 方志刚, 常 辉 等. 海洋环境下钛合金主要服役性能研究 [J]. 中国材料进展, 2020, 39: 185
|
5 |
Gorynin I V. Titanium alloys for marine application [J]. Mater. Sci. Eng., 1999, A263: 112
|
6 |
Li W Y, Wang S, Liu T, et al. Current status and progress on pressure hull structure of manned deep submersible [J]. Shipbuild. China, 2016, 57: 210
|
6 |
李文跃, 王 帅, 刘 涛 等. 大深度载人潜水器耐压壳结构研究现状及最新进展 [J]. 中国造船, 2016, 57: 210
|
7 |
Cao F X. Development of materials for manned deep-ocean submersible [J]. Mater. China, 2011, 30(6): 33
|
7 |
曹福辛. 载人潜水器材料技术发展现状 [J]. 中国材料进展, 2011, 30(6): 33
|
8 |
Pan X N, Xu S W, Qian G A, et al. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure [J]. Mater. Sci. Eng., 2020, A798: 140110
|
9 |
Wang Q, Ren J Q, Wu Y K, et al. Comparative study of crack growth behaviors of fully-lamellar and bi-lamellar Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Alloys Compd., 2019, 789: 249
doi: 10.1016/j.jallcom.2019.02.302
|
10 |
Xu L Y, Wang Y, Jiang P, et al. Effect of annealing temperature on microstructure and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. Titanium Ind. Prog., 2020, 37(6): 12
|
10 |
许玲玉, 王 洋, 蒋 鹏 等. 退火温度对Ti-6Al-3Nb-2Zr-1Mo合金组织及力学性能的影响 [J]. 钛工业进展, 2020, 37(6): 12
|
11 |
Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI-6Al-4V with a transformed microstructure [J]. Acta Mater., 2001, 49: 3565
doi: 10.1016/S1359-6454(01)00236-1
|
12 |
Zhang B, Song Z M, Lei L M, et al. Geometrical scale-sensitive fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloys with α/β lamellar microstructures [J]. J. Mater. Sci. Technol., 2014, 30: 1284
doi: 10.1016/j.jmst.2014.07.012
|
13 |
Fan J K, Huang H, Xue X Y, et al. Hot rolled Ti6321 alloy sheets with different initial microstructures: Microstructure, mechanical properties, and anisotropy characteristics [J]. Front. Mater., 2020, 7: 110
doi: 10.3389/fmats.2020.00110
|
14 |
Li J X, Liu P F, Tong X Y. A simplified method for studying cyclic creep behaviors of deep-sea manned submersible viewport windows [J]. Int. J. Press. Vessels Pip., 2021, 194: 104565
doi: 10.1016/j.ijpvp.2021.104565
|
15 |
Yu C L, Guo Q B, Gong X B, et al. Fatigue life assessment of pressure hull of deep-sea submergence vehicle [J]. Ocean Eng., 2022, 245: 110528
doi: 10.1016/j.oceaneng.2022.110528
|
16 |
Greenaway S F, Sullivan K D, Umfress S H, et al. Revised depth of the Challenger deep from submersible transects; including a general method for precise, pressure-derived depths in the ocean [J]. Deep Sea Res., 2021, 178I: 103644
|
17 |
Liu T. Research on the design of spherical pressure hull in manned deep-sea submersible [J]. J. Ship Mech., 2007, 11: 214
|
17 |
刘 涛. 深海载人潜水器耐压球壳设计特性分析 [J]. 船舶力学, 2007, 11: 214
|
18 |
Kohnen W. Review of deep ocean manned submersible activity in 2013 [J]. Mar. Technol. Soc. J., 2013, 47: 56
doi: 10.4031/MTSJ.47.5.6
|
19 |
Chen C M. Study on composition optimization and microstructures and properties of corrosion resistant Ti-Al-Nb-Zr-Mo alloy [D]. Harbin: Harbin Institute of Technology, 2018
|
19 |
陈才敏. 耐蚀Ti-Al-Nb-Zr-Mo合金的成分优化及组织性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
|
20 |
Lei J F, Ma Y J, Yang R, et al. Material and fabrication of the personnel hull for full ocean depth submersible [J]. J. Eng. Stud., 2016, 8: 179
doi: 10.3724/SP.J.1224.2016.00179
|
20 |
雷家峰, 马英杰, 杨 锐 等. 全海深载人潜水器载人球壳的选材及制造技术 [J]. 工程研究-跨学科视野中的工程, 2016, 8: 179
|
21 |
Sagalevich A M. 30 years experience of Mir submersibles for the ocean operations [J]. Deep Sea Res., 2018, 155II: 83
|
22 |
Xi G Q. Studies on room temperature creep and dwell fatigue properties of marine engineering titanium alloys [D]. Hefei: University of Science and Technology of China, 2021
|
22 |
席国强. 海洋工程用钛合金室温蠕变及保载疲劳性能研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2021
|
23 |
Mao P L. Titanium alloy for ship and its design principle [J]. Shanghai Steel Iron Res., 1995, (4): 50
|
23 |
毛彭龄. 舰船用钛合金及其设计原理 [J]. 上海钢研, 1995, (4): 50
|
24 |
Lv Y F, Zhang Y, Jing B Q, et al. Effects of solution treatment on microstructure and properties of TC4ELI titanium alloy [J]. Chin. J. Nonferrous Met., 2010, 20(spec.): 616
|
24 |
吕逸帆, 张 毅, 景宝全 等. 固溶时效对TC4ELI钛合金组织和性能的影响 [J]. 中国有色金属学报, 2010, 20(特刊): 616
|
25 |
Liu J Q. Microstructure and impact toughness resistance of TC4 titanium alloy [J]. Hot Work. Technol., 2013, 42(12): 63
|
25 |
刘建强. TC4钛合金的显微组织及其抗冲击韧性 [J]. 热加工工艺, 2013, 42(12): 63
|
26 |
Zhao Y Q. The new main titanium alloys used for shipbuilding developed in China and their applications [J]. Mater. China, 2014, 33: 398
|
26 |
赵永庆. 我国创新研制的主要船用钛合金及其应用 [J]. 中国材料进展, 2014, 33: 398
|
27 |
Chen B W, Huang J, Dan Z H, et al. Study on high pressure compressive creep behavior at ambient temperature of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. Hot Work. Technol., 2018, 47(24): 73
|
27 |
陈博文, 黄 杰, 淡振华 等. Ti-6Al-3Nb-2Zr-1Mo合金常温高压压缩蠕变行为研究 [J]. 热加工工艺, 2018, 47(24): 73
|
28 |
Li Y H, Yang R, Qing D G, et al. Effect of microstructure on tensile creep behavior of TC4ELI titanium alloy at room temperature [J]. World Nonferrous Met., 2018, (23): 180
|
28 |
李有华, 杨 蓉, 庆达嘎 等. 显微组织对TC4ELI钛合金常温拉伸蠕变行为影响研究 [J]. 世界有色金属, 2018, (23): 180
|
29 |
Wang L, Qu P, Li Y Q, et al. Theoretical and experimental investigations for creep properties of titanium alloy materials [J]. J. Ship Mech., 2018, 22: 464
|
29 |
王 雷, 屈 平, 李艳青 等. 钛合金材料蠕变特性的理论与试验研究 [J]. 船舶力学, 2018, 22: 464
|
30 |
Lu J F, Dan Z H, Chen B W, et al. Research progress of high stress induced compression creep of titanium alloys [J]. Mater. China, 2019, 38: 1074
|
30 |
陆嘉飞, 淡振华, 陈博文 等. 高应力诱导型钛合金压缩蠕变研究现状及进展 [J]. 中国材料进展, 2019, 38: 1074
|
31 |
Wang K, Wu L, Li Y Z, et al. Study on the overload and dwell-fatigue property of titanium alloy in manned deep submersible [J]. China Ocean Eng., 2020, 34: 738
doi: 10.1007/s13344-020-0067-8
|
32 |
Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy [J]. Chin. J. Mater. Res., 2021, 35: 881
doi: 10.11901/1005.3093.2021.151
|
32 |
席国强, 邱建科, 雷家峰 等. Ti-6Al-4V合金的室温蠕变行为 [J]. 材料研究学报, 2021, 35: 881
doi: 10.11901/1005.3093.2021.151
|
33 |
Ao N, Liu D X, Zhang X H, et al. Surface rolling deformed severity-dependent fatigue mechanism of Ti-6Al-4V alloy [J]. Int. J. Fatigue, 2022, 158: 106732
doi: 10.1016/j.ijfatigue.2022.106732
|
34 |
Ren J Q, Qi W, Zhang B B, et al. Charpy impact anisotropy and the associated mechanisms in a hot-rolled Ti-6Al-3Nb-2Zr-1Mo alloy plate [J]. Mater. Sci. Eng., 2022, A831: 142187
|
35 |
Sun M, Ye W J, Hui S X, et al. Effects of heat treatment on microstructures and tensile properties of Ti-62A alloy plate [J]. Chin. J. Nonferrous Met., 2010, 20(spec.): 681
|
35 |
孙 明, 叶文君, 惠松骁 等. 热处理对Ti-62A合金厚板组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(特刊): 681
|
36 |
Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development [J]. Mater. Des., 2011, 32: 1684
doi: 10.1016/j.matdes.2010.09.011
|
37 |
Chen C Y, Ye D Y, Zhang L N, et al. Effects of tensile/compressive overloads on fatigue crack growth behavior of an extra-low-interstitial titanium alloy [J]. Int. J. Mech. Sci., 2016, 118: 55
doi: 10.1016/j.ijmecsci.2016.09.014
|
38 |
Wang H, Wei F R, Cui W J, et al. Thermomechanical treatment of an extra-low interstitial TC4 alloy [J]. Trans. Mater. Heat Treat., 2015, 36: 52
|
38 |
王 海, 魏芬绒, 崔文俊 等. 超低间隙TC4钛合金形变热处理工艺 [J]. 材料热处理学报, 2015, 36: 52
|
39 |
Wang Z D, Wang S B, Yang K, et al. In-situ SEM investigation on the fatigue behavior of Ti-6Al-4V ELI fabricated by the powder-blown underwater directed energy deposition technique [J]. Mater. Sci. Eng., 2022, A838: 142783
|
40 |
Carrion P E, Shamsaei N, Daniewicz S R, et al. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects [J]. Int. J. Fatigue, 2017, 99: 87
doi: 10.1016/j.ijfatigue.2017.02.013
|
41 |
Zhou D D, Zeng W D, Xu J W, et al. Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure [J]. Mater. Charact., 2019, 151: 103
doi: 10.1016/j.matchar.2019.03.005
|
42 |
Neeraj T, Hou D H, Daehn G S, et al. Phenomenological and microstructural analysis of room temperature creep in titanium alloys [J]. Acta Mater., 2000, 48: 1225
doi: 10.1016/S1359-6454(99)00426-7
|
43 |
Neeraj T, Mills M J. Short-range order (SRO) and its effect on the primary creep behavior of a Ti-6wt.%Al alloy [J]. Mater. Sci. Eng., 2001, A319-321: 415
|
44 |
Ankem S, Wyatt Z W, Joost W. Advances in low-temperature (< 0.25Tm) creep behavior of single and two-phase titanium alloys [J]. Procedia Eng., 2013, 55: 10
doi: 10.1016/j.proeng.2013.03.212
|
45 |
Odegard B C, Thompson A W. Low temperature creep of Ti-6Al-4V [J]. Metall. Mater. Trans., 1974, 5B: 1207
|
46 |
Xu L Y, Wang Y, Wang Q, et al. Study on compressive creep behavior at room temperature and dislocation type of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. Dev. Appl. Mater., 2021, 36(1): 17
|
46 |
许玲玉, 王 洋, 王 启 等. Ti-6Al-3Nb-2Zr-1Mo合金室温压缩蠕变行为及位错类型研究 [J]. 材料开发与应用, 2021, 36(1): 17
|
47 |
Imam M A, Gilmore C M. Room temperature creep of Ti-6AI-4V [J]. Metall. Trans., 1979, 10A: 419
|
48 |
Doraiswamy D, Ankem S. The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys [J]. Acta Mater., 2003, 51: 1607
doi: 10.1016/S1359-6454(02)00561-X
|
49 |
Yamada T, Kawabata K, Sato E, et al. Presences of primary creep in various phase metals and alloys at ambient temperature [J]. Mater. Sci. Eng., 2004, A387-389: 719
|
50 |
Zhang Z, Dunne F P E. Microstructural heterogeneity in rate-dependent plasticity of multiphase titanium alloys [J]. J. Mech. Phys. Solids, 2017, 103: 199
doi: 10.1016/j.jmps.2017.03.012
|
51 |
Xi G Q, Lei J F, Qiu J K, et al. A semi-quantitative explanation of the cold dwell effect in titanium alloys [J]. Mater. Des., 2020, 194: 108909
doi: 10.1016/j.matdes.2020.108909
|
52 |
Zhou S T, Liu J, Huang B Z. Continuum damage mechanics study on low-cycle fatigue damage of Ti alloy TC4 [J]. J. Mech. Strength, 2008, 30: 798
|
52 |
周胜田, 刘 均, 黄宝宗. 钛合金TC4低周疲劳连续损伤力学研究 [J]. 机械强度, 2008, 30: 798
|
53 |
Wang R F, Li Y T, An H P. Low cycle fatigue behaviors of Ti-6Al-4V alloy controlled by strain and stress [J]. Key Eng. Mater., 2012, 525-526: 441
doi: 10.4028/www.scientific.net/KEM.525-526
|
54 |
Sun Y Y, Chang H, Fang Z G, et al. Effect of microstructure on low cycle fatigue property of TC4 ELI titanium alloy [J]. Rare Met. Mater. Eng., 2020, 49: 1623
|
54 |
孙洋洋, 常 辉, 方志刚 等. TC4 ELI钛合金显微组织对低周疲劳性能的影响 [J]. 稀有金属材料与工程, 2020, 49: 1623
|
55 |
Wang F, Cui W C, Pan B B, et al. Normalised fatigue and fracture properties of candidate titanium alloys used in the pressure hull of deep manned submersibles [J]. Ships Offshore Struct., 2014, 9: 297
doi: 10.1080/17445302.2013.785801
|
56 |
Sun C Q, Li Y Q, Huang R X, et al. Crack initiation mechanism and fatigue life of titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X: Effects of stress ratio and loading frequency [J]. Mater. Sci. Eng., 2020, A798: 140265
|
57 |
Wang L, Wang K, Li Y Q, et al. Low-cycle fatigue properties of TC4ELI titanium alloy [J]. Titanium Ind. Prog., 2018, 35(2): 17
|
57 |
王 雷, 王 琨, 李艳青 等. TC4ELI钛合金低周疲劳性能研究 [J]. 钛工业进展, 2018, 35(2): 17
|
58 |
An F P, Liu Q L, Jiang P. Effect of microstructure on low-cycle fatigue property of Ti6321 alloy [J]. Mater. Res. Express, 2021, 8: 096517
|
59 |
Ren J Q, Wang Q, Zhang B B, et al. Influence of microstructure on fatigue crack growth behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Bimodal vs. lamellar structures [J]. Intermetallics, 2021, 130: 107058
doi: 10.1016/j.intermet.2020.107058
|
60 |
Liu T F, Zhang B, Zhang J F, et al. Effects of notch stress concentration factors on low-cycle fatigue performance of TC4 ELI alloy [J]. Chin. J. Mater. Res., 2022, in press
|
60 |
刘天福, 张 滨, 张均锋 等. 缺口应力集中系数对TC4 ELI合金低周疲劳性能影响的研究 [J]. 材料研究学报, 2022, 已录用)
|
61 |
Wang X, Vo P, Jahazi M, et al. Dwell fatigue microstructure in a near-α titanium alloy [J]. Metall. Mater. Trans., 2007, 38A: 831
|
62 |
Toubal L, Bocher P, Moreau A. Dwell-fatigue life dispersion of a near alpha titanium alloy [J]. Int. J. Fatigue, 2009, 31: 601
doi: 10.1016/j.ijfatigue.2008.09.010
|
63 |
Chandravanshi V, Prasad K, Singh V, et al. Effects of α + β phase deformation on microstructure, fatigue and dwell fatigue behavior of a near alpha titanium alloy [J]. Int. J. Fatigue, 2016, 91: 100
doi: 10.1016/j.ijfatigue.2016.05.023
|
64 |
Zheng Z B, Stapleton A, Fox K, et al. Understanding thermal alleviation in cold dwell fatigue in titanium alloys [J]. Int. J. Plast., 2018, 111: 234
doi: 10.1016/j.ijplas.2018.07.018
|
65 |
Littlewood P D, Wilkinson A J. Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading [J]. Int. J. Fatigue, 2012, 43: 111
doi: 10.1016/j.ijfatigue.2012.03.001
|
66 |
Hémery S, Villechaise P. On the influence of ageing on the onset of plastic slip in Ti-6Al-4V at room temperature: Insight on dwell fatigue behavior [J]. Scr. Mater., 2017, 130: 157
doi: 10.1016/j.scriptamat.2016.11.042
|
67 |
Lavogiez C, Hémery S, Villechaise P. Concurrent operation of < c + a > slip and twinning under cyclic loading of Ti-6Al-4V [J]. Scr. Mater., 2018, 157: 30
doi: 10.1016/j.scriptamat.2018.07.033
|
68 |
Lavogiez C, Hémery S, Villechaise P. On the mechanism of fatigue and dwell-fatigue crack initiation in Ti-6Al-4V [J]. Scr. Mater., 2020, 183: 117
doi: 10.1016/j.scriptamat.2020.03.031
|
69 |
Zeng L R, Lei L M, Luo X M, et al. Toward an understanding of dwell fatigue damage mechanism of bimodal Ti-6Al-4V alloys [J]. J. Mater. Sci. Technol., 2022, 108: 244
doi: 10.1016/j.jmst.2021.08.041
|
70 |
Lefranc P, Doquet V, Gerland M, et al. Nucleation of cracks from shear-induced cavities in an α/β titanium alloy in fatigue, room-temperature creep and dwell-fatigue [J]. Acta Mater., 2008, 56: 4450
doi: 10.1016/j.actamat.2008.04.060
|
71 |
Lefranc P, Sarrazinbaudoux C, Doquet V, et al. Investigation of the dwell period's influence on the fatigue crack growth of a titanium alloy [J]. Scr. Mater., 2009, 60: 281
doi: 10.1016/j.scriptamat.2008.09.033
|
72 |
Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
|
73 |
Hémery S, Villechaise P. Comparison of slip system activation in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-2Sn-4Zr-6Mo under tensile, fatigue and dwell-fatigue loadings [J]. Mater. Sci. Eng., 2017, A697: 177
|
74 |
Zhang Z. Micromechanistic study of textured multiphase polycrystals for resisting cold dwell fatigue [J]. Acta Mater., 2018, 156: 254
doi: 10.1016/j.actamat.2018.06.033
|
75 |
Waheed S, Zheng Z B, Balint D S, et al. Microstructural effects on strain rate and dwell sensitivity in dual-phase titanium alloys [J]. Acta Mater., 2019, 162: 136
doi: 10.1016/j.actamat.2018.09.035
|
76 |
Joseph S, Joseph K, Lindley T C, et al. The role of dwell hold on the dislocation mechanisms of fatigue in a near alpha titanium alloy [J]. Int. J. Plast., 2020, 131: 102743
doi: 10.1016/j.ijplas.2020.102743
|
77 |
Bache M. A review of dwell sensitive fatigue in titanium alloys: The role of microstructure, texture and operating conditions [J]. Int. J. Fatigue, 2003, 25: 1079
doi: 10.1016/S0142-1123(03)00145-2
|
78 |
McBagonluri F, Akpan E, Mercer C, et al. An investigation of the effects of microstructure on dwell fatigue crack growth in Ti-6242 [J]. Mater. Sci. Eng., 2005, A405: 111
|
79 |
Evans W J. Optimising mechanical properties in alpha + beta titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 89
|
80 |
Suri S, Neeraj T, Daehn G S, et al. Mechanisms of primary creep in α/β titanium alloys at lower temperatures [J]. Mater. Sci. Eng., 1997, A234-236: 996
|
81 |
Zhang Z, Dunne F P E. Phase morphology, variants and crystallography of alloy microstructures in cold dwell fatigue [J]. Int. J. Fatigue, 2018, 113: 324
doi: 10.1016/j.ijfatigue.2018.03.030
|
82 |
Hémery S, Stinville J C. Microstructural and load hold effects on small fatigue crack growth in α + β dual phase Ti alloys [J]. Int. J. Fatigue, 2022, 156: 106699
doi: 10.1016/j.ijfatigue.2021.106699
|
83 |
Kassner M E, Kosaka Y, Hall J S. Low-cycle dwell-time fatigue in Ti-6242 [J]. Metall. Mater. Trans., 1999, 30A: 2383
|
84 |
Liu Y, Dunne F P E. The mechanistic link between macrozones and dwell fatigue in titanium alloys [J]. Int. J. Fatigue, 2021, 142: 105971
doi: 10.1016/j.ijfatigue.2020.105971
|
85 |
Xu Y L, Joseph S, Karamched P, et al. Predicting dwell fatigue life in titanium alloys using modelling and experiment [J]. Nat. Commun., 2020, 11: 5868
doi: 10.1038/s41467-020-19470-w
pmid: 33203830
|
86 |
Le Biavant K, Pommier S, Prioul C. Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 527
doi: 10.1046/j.1460-2695.2002.00480.x
|
87 |
Lunt D, Da Fonseca J Q, Rugg D, et al. Microscopic strain localisation in Ti-6Al-4V during uniaxial tensile loading [J]. Mater. Sci. Eng., 2017, A680: 444
|
88 |
Venkatramani G, Ghosh S, Mills M. A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys [J]. Acta Mater., 2007, 55: 3971
doi: 10.1016/j.actamat.2007.03.017
|
89 |
Sun C Q, Li Y Q, Xu K L, et al. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77: 223
doi: 10.1016/j.jmst.2020.10.063
|
90 |
Song Q Y, Li Y Q, Wang L, et al. Effect of rise and fall time on dwell fatigue behavior of a high strength titanium alloy [J]. Metals, 2019, 9: 914
doi: 10.3390/met9080914
|
91 |
Stubbington C A, Pearson S. Effect of dwell on the growth of fatigue cracks in Ti-6Al-4V alloy bar [J]. Eng. Fract. Mech., 1978, 10: 723
doi: 10.1016/0013-7944(78)90030-9
|
92 |
Li J, Lu L, Zhang P, et al. Effect of cold creep on fatigue crack growth behavior for commercial pure titanium [J]. Theor. Appl. Fract. Mech., 2018, 97: 177
doi: 10.1016/j.tafmec.2018.08.009
|
93 |
Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin, Heidelberg: Springer, 2007: 259
|
94 |
Zheng Z B, Balint D S, Dunne F P E. Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue [J]. Acta Mater., 2017, 127: 43
doi: 10.1016/j.actamat.2017.01.021
|
95 |
Zheng Z B, Balint D S, Dunne F P E. Dwell fatigue in two Ti alloys: An integrated crystal plasticity and discrete dislocation study [J]. J. Mech. Phys. Solids, 2016, 96: 411
doi: 10.1016/j.jmps.2016.08.008
|
96 |
Shi D G, Xu X Y, Wu Y, et al. Influence factors and research progress of dwell fatigue for titanium alloy [J]. Mater. China, 2019, 38: 722
|
96 |
史栋刚, 徐小严, 吴 雨 等. 钛合金保载疲劳的影响因素与研究进展 [J]. 中国材料进展, 2019, 38: 722
|
97 |
Sinha V, Schwarz R B, Mills M J, et al. Influence of hydrogen on dwell-fatigue response of near-alpha titanium alloys [J]. Acta Mater., 2020, 188: 315
doi: 10.1016/j.actamat.2019.12.025
|
98 |
Evans W J, Bache M R. Hydrogen and fatigue behaviour in a near alpha titanium alloy [J]. Scr. Metall. Mater., 1995, 32: 1019
doi: 10.1016/0956-716X(95)00068-7
|
99 |
Hasija V, Ghosh S, Mills M J, et al. Deformation and creep modeling in polycrystalline Ti-6Al alloys [J]. Acta Mater., 2003, 51: 4533
doi: 10.1016/S1359-6454(03)00289-1
|
100 |
Pilchak A L, Williams J C. Observations of facet formation in near-α titanium and comments on the role of hydrogen [J]. Met-all. Mater. Trans., 2011, 42A: 1000
|
101 |
Dunne F P E, Walker A, Rugg D. A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue [J]. Proc. Roy. Soc., 2007, 463A: 1467
|
102 |
Wu Z H, Kou H C, Chen N N, et al. Recent developments in cold dwell fatigue of titanium alloys for aero-engine applications: A review [J]. J. Mater. Res. Technol., 2022, 20: 469
doi: 10.1016/j.jmrt.2022.07.094
|
103 |
Zheng Z B, Balint D S, Dunne F P E. Rate sensitivity in discrete dislocation plasticity in hexagonal close-packed crystals [J]. Acta Mater., 2016, 107: 17
doi: 10.1016/j.actamat.2016.01.035
|
104 |
Zheng Z B, Balint D S, Dunne F P E. Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys [J]. Int. J. Plast., 2016, 87: 15
doi: 10.1016/j.ijplas.2016.08.009
|
105 |
Jun T S, Armstrong D E J, Britton T B. A nanoindentation investigation of local strain rate sensitivity in dual-phase Ti alloys [J]. J. Alloys Compd., 2016, 672: 282
doi: 10.1016/j.jallcom.2016.02.146
|
106 |
Zhang Z, Jun T S, Britton T B, et al. Intrinsic anisotropy of strain rate sensitivity in single crystal alpha titanium [J]. Acta Mater., 2016, 118: 317
doi: 10.1016/j.actamat.2016.07.044
|
107 |
Zeng L R, Wang L Y, Hua P T, et al. In-situ investigation of dwell fatigue damage mechanism of pure Ti using digital image correlation technique [J]. Mater. Charact., 2021, 181: 111466
doi: 10.1016/j.matchar.2021.111466
|
108 |
Tanaka Y, Hattori K, Harada Y. Evaluating local strain rate sensitivity of titanium alloy using dynamic nanoindentation testing [J]. Measurement: Sensors, 2021, 18: 100094
doi: 10.1016/j.measen.2021.100094
|
109 |
Zhang Z, Jun T S, Britton T B, et al. Determination of Ti-6242 α and β slip properties using micro-pillar test and computational crystal plasticity [J]. J. Mech. Phys. Solids, 2016, 95: 393
doi: 10.1016/j.jmps.2016.06.007
|
110 |
Ashton P J, Jun T S, Zhang Z, et al. The effect of the beta phase on the micromechanical response of dual-phase titanium alloys [J]. Int. J. Fatigue, 2017, 100: 377
doi: 10.1016/j.ijfatigue.2017.03.020
|
111 |
Joseph S, Bantounas I, Lindley T C, et al. Slip transfer and deformation structures resulting from the low cycle fatigue of near-alpha titanium alloy Ti-6242Si [J]. Int. J. Plast., 2018, 100: 90
doi: 10.1016/j.ijplas.2017.09.012
|
112 |
Zheng Z B, Waheed S, Balint D S, et al. Slip transfer across phase boundaries in dual phase titanium alloys and the effect on strain rate sensitivity [J]. Int. J. Plast., 2018, 104: 23
doi: 10.1016/j.ijplas.2018.01.011
|
113 |
Zhang M D, Cao J X, Li T, et al. The effect of transformed β-phase on local area plastic deformation and dislocation characteristics of Ti6242s alloy under low-cycle fatigue and dwell fatigue [J]. Mater. Sci. Eng., 2021, A802: 140643
|
114 |
Anahid M, Samal M K, Ghosh S. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys [J]. J. Mech. Phys. Solids, 2011, 59: 2157
doi: 10.1016/j.jmps.2011.05.003
|
115 |
Peng J, Zhou C Y, Dai Q, et al. Dwell fatigue and cycle deformation of CP-Ti at ambient temperature [J]. Mater. Des., 2015, 71: 1
doi: 10.1016/j.matdes.2015.01.007
|
116 |
Wang F, Wang K, Cui W C. A simplified life estimation method for the spherical hull of deep manned submersibles [J]. Mar. Struct., 2015, 44: 159
doi: 10.1016/j.marstruc.2015.09.003
|
117 |
Ota Y, Kubushiro K, Yamazaki Y. The life evaluation by linear cumulative damage rule for cold dwell fatigue of Ti-6Al-4V alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 259
doi: 10.1111/ffe.v45.1
|
118 |
Zeng L R. Effect of volume fraction of primary α phase on fatigue properties of Ti-6Al-4V alloy and micromechanism of dwell effect [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017
|
118 |
曾令荣. 初生α相体积分数对Ti-6Al-4V合金保载疲劳性能影响及保载效应微观机理研究 [D]. 沈阳: 中国科学院金属研究所, 2017
|
119 |
Dowling N E. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue [M]. 4th Ed., Boston: Pearson, 2013: 457
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|