Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1371-1384    DOI: 10.11900/0412.1961.2022.00113
  综述 本期目录 | 过刊浏览 |
金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展
张金钰(), 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军
西安交通大学 金属材料强度国家重点实验室 西安 710049
Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers
ZHANG Jinyu(), QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
Jinyu ZHANG, Qimeng QU, Yaqiang WANG, Kai WU, Gang LIU, Jun SUN. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. Acta Metall Sin, 2022, 58(11): 1371-1384.

全文: PDF(2092 KB)   HTML
摘要: 

核工程关键材料是保障我国核电技术顺利发展、核电系统安全高效运行的物质基础。纳米金属多层膜作为一类基于界面自修复理论设计的新型纳米结构材料,由于其高密度的界面结构不仅可以有效地阻碍位错运动从而提高材料强度,还可以显著吸收辐照产生的缺陷并促进其湮灭/复合进而提高材料的辐照损伤容限,具有广阔的核应用前景。本文围绕近几年国内外有关金属/高熵合金多层膜材料力学行为与辐照损伤特性的研究,阐述了金属/高熵合金纳米多层膜材料辐照前后的组织结构与力学特性演化行为及其内在机制,提出了调控纳米金属多层膜辐照损伤容限的策略,并对金属/高熵合金纳米多层膜材料的发展趋势进行了展望。

关键词 金属/高熵合金多层膜力学性能变形机制辐照缺陷演化    
Abstract

Key components in nuclear engineering serve as a security barrier, ensuring the smooth development of nuclear power technology, as well as safe and efficient operation of the nuclear power system in China. Metallic multilayers are novel nanostructured materials based on interface self-healing theory, which exhibit broad nuclear application due to their high-density heterogeneous interfaces. They can not only effectively hinder dislocation movement to enhance material strength but also obviously absorb irradiation-induced defects and promote their annihilation or recombination to improve material irradiation damage tolerance. Considering the recent domestic and international studies on irradiation characteristics of metal/high-entropy alloy multilayers, this study reviewed the evolution of microstructure and mechanical properties, and their underlying mechanisms in metal/high-entropy alloy multilayers before and after irradiation. Furthermore, it also explored strategies to enhance multilayers irradiation tolerance. The development of nanostructured multilayered materials with high tolerance to radiation damage were also proposed.

Key wordsmetal/high-entropy alloy multilayer    mechanical property    deformation mechanism    irradiation    defect evolution
收稿日期: 2022-03-11     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(92163201);国家自然科学基金项目(U2067219);国家自然科学基金项目(52001247);中国博士后科学基金项目(2019M663689);博士后创新人才支持计划项目(BX20190266);青年创新团队科研计划项目(22JP042)
作者简介: 张金钰,男,1982年生,教授,博士
图1  组元层厚(h)为10和25 nm的Ni/FeCoCrNi多层膜[27]以及10 nm的Cu/NbMoTaW多层膜[28]的组织及元素分布
图2  Cu/FeCoCrNi[30]与Cu/NbMoTaW[42]多层膜及其组元双金属多层膜的硬度与h-1/2的关系
图3  h = 50 nm的Cu/FeCoCrNi多层膜压痕的TEM像[30]
图4  h = 50 nm的Cu/NbMoTaW多层膜压痕的TEM像和塑性应变统计图[28]
图5  fcc、bcc体系高熵合金薄膜的应变速率敏感性指数(m)与晶粒尺寸(d)的关系[50~66]
图6  Cu/NbMoTaW、Cu/FeCoCrNi以及Ni/FeCoCrNi多层膜的m与h的关系[27,28]
图7  辐照态h = 10 nm Cu/FeCoCrNi多层膜TEM像及氦浓度分布[78]
图8  辐照前后Cu/FeCoCrNi纳米多层膜硬度(H)、辐照硬化量(ΔH)和m随h的变化[78]
1 Armstrong D E J, Britton T B. Effect of dislocation density on improved radiation hardening resistance of nano-structured tungsten-rhenium [J]. Mater. Sci. Eng., 2014, A611: 388
2 Huang H F, Zhang W, De Los Reyes M, et al. Mitigation of He embrittlement and swelling in nickel by dispersed SiC nanoparticles [J]. Mater. Des., 2016, 90: 359
doi: 10.1016/j.matdes.2015.10.147
3 Zhang Y, Yu C, Zhou T, et al. Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels [J]. Mater. Des., 2015, 88: 675
doi: 10.1016/j.matdes.2015.09.056
4 Chen F D. Radiation damage studies of the novel Cr/W metallic multilayer nanocomposites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
4 陈飞达. 新型铬/钨纳米金属多层膜复合材料的辐照损伤研究 [D]. 南京: 南京航空航天大学, 2016
5 Koehler J S. Attempt to design a strong solid [J]. Phys. Rev., 1970, 2B: 547
6 Zhang S S, Wang J B, Su Y Y. Current research status of nano-multilayer films [J]. Mater. Rep., 2014, 28(21): 147
6 张山山, 王锦标, 苏永要. 纳米多层膜的研究现状 [J]. 材料导报, 2014, 28(21): 147
7 Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
doi: 10.1126/science.1183723
8 Chen Z, Niu L L, Wang Z L, et al. A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain [J]. Acta Mater., 2018, 147: 100
doi: 10.1016/j.actamat.2018.01.015
9 Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
doi: 10.1103/PhysRevLett.100.136102
10 Zhang J Y, Zeng F L, Wu K, et al. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions [J]. Mater. Sci. Eng., 2016, A673: 530
11 Chen F D, Tang X B, Yang Y H, et al. Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance [J]. J. Nucl. Mater., 2016, 468: 164
doi: 10.1016/j.jnucmat.2015.11.028
12 Chen Y, Liu Y, Fu E G, et al. Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers [J]. Acta Mater., 2015, 84: 393
doi: 10.1016/j.actamat.2014.10.061
13 Wang M, Beyerlein I J, Zhang J, et al. Defect-interface interactions in irradiated Cu/Ag nanocomposites [J]. Acta Mater., 2018, 160: 211
doi: 10.1016/j.actamat.2018.09.003
14 Yu K Y, Sun C, Chen Y, et al. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study [J]. Philos. Mag., 2013, 93: 3547
doi: 10.1080/14786435.2013.815378
15 Liang X Q, Wang Y Q, Zhao J T, et al. Size- and ion-dose-dependent microstructural evolution and hardening in He-irradiated miscible Cu/Zr crystalline/crystalline nanolaminates [J]. Surf. Coat. Technol., 2019, 366: 255
doi: 10.1016/j.surfcoat.2019.03.037
16 Bagchi S, Anwar S, Lalla N P. Effect of swift heavy ion irradiation in Fe/W multilayer structures [J]. Appl. Surf. Sci., 2009, 256: 541
doi: 10.1016/j.apsusc.2009.08.029
17 Chen F D, Tang X B, Huang H, et al. Surface damage and mechanical properties degradation of Cr/W multilayer films irradiated by Xe20+ [J]. Appl. Surf. Sci., 2015, 357: 1225
doi: 10.1016/j.apsusc.2015.09.170
18 Wu S H, Cheng P M, Wu K, et al. Effect of He-irradiation fluence on the size-dependent hardening and deformation of nanostructured Mo/Zr multilayers [J]. Int. J. Plast., 2018, 111: 36
doi: 10.1016/j.ijplas.2018.07.008
19 Chen E Y, Deo C, Dingreville R. Irradiation resistance of nanostructured interfaces in Zr-Nb metallic multilayers [J]. J. Mater. Res., 2019, 34: 2239
doi: 10.1557/jmr.2019.42
20 Höchbauer T, Misra A, Hattar K, et al. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites [J]. J. Appl. Phys., 2005, 98: 123516
doi: 10.1063/1.2149168
21 Tan Y Q, Wang X M, Zhu S, et al. Research progress on strengthening and ductilizing high-entropy alloys [J]. Mater. Rep., 2020, 34: 5120
21 谭雅琴, 王晓明, 朱 胜 等. 高熵合金强韧化的研究进展 [J]. 材料导报, 2020, 34: 5120
22 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
23 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564 pmid: 27976669
24 Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
25 Zhao Y F, Wang Y Q, Wu K, et al. Interface-affected mechanical properties and strengthening mechanisms in heterogeneous high entropy alloy nanolaminates [J]. J. Alloys Compd., 2022, 903: 163915
doi: 10.1016/j.jallcom.2022.163915
26 Zhu X Y, Pan F. Research progress in mechanical properties of metal nanomultilayers [J]. Rare Met. Lett., 2011, 30(10): 1
26 朱晓莹, 潘 峰. 金属纳米多层膜力学性能研究进展 [J]. 中国材料进展, 2011, 30(10): 1
27 Zhao Y F, Feng X B, Zhang J Y, et al. Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys [J]. Nanoscale, 2020, 12: 14135
doi: 10.1039/d0nr02483j pmid: 32597912
28 Zhao Y F, Zhang J Y, Wang Y Q, et al. Size-dependent mechanical properties and deformation mechanisms in Cu/NbMoTaW nanolaminates [J]. Sci. China Mater., 2020, 63: 444
doi: 10.1007/s40843-019-1195-7
29 Zhao Y F, Zhang J Y, Wang Y Q, et al. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68: 16
doi: 10.1016/j.jmst.2020.06.042
30 Zhao Y F, Zhang J Y, Wang Y Q, et al. Unusual plastic deformation behavior of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates [J]. Nanoscale, 2019, 11: 11340
doi: 10.1039/c9nr00836e pmid: 31166340
31 Zhang J Y, Liu G, Sun J. Size effects on deformation and fracture behavior of nanostructured metallic multilayers [J]. Acta Metall. Sin., 2014, 50: 169
doi: 10.3724/SP.J.1037.2013.00599
31 张金钰, 刘 刚, 孙 军. 纳米金属多层膜的变形与断裂行为及其尺寸效应 [J]. 金属学报, 2014, 50: 169
doi: 10.3724/SP.J.1037.2013.00599
32 Zhao Y F, Chen H H, Zhang D D, et al. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116: 199
doi: 10.1016/j.jmst.2021.10.036
33 Chen Y, Liu Y, Sun C, et al. Microstructure and strengthening mechanisms in Cu/Fe multilayers [J]. Acta Mater., 2012, 60: 6312
doi: 10.1016/j.actamat.2012.08.005
34 Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers [J]. Acta Mater., 2011, 59: 1924
doi: 10.1016/j.actamat.2010.11.057
35 Liu Y, Chen Y, Yu K Y, et al. Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers [J]. Int. J. Plast., 2013, 49: 152
doi: 10.1016/j.ijplas.2013.03.005
36 Zhang J Y, Zhang P, Zhang X, et al. Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers [J]. Mater. Sci. Eng., 2012, A545: 118
37 Hou Z Q, Zhang J Y, Li J, et al. Phase transformation-induced strength softening in Ti/Ta nanostructured multilayers: Coherent interface vs phase boundary [J]. Mater. Sci. Eng., 2017, A684: 78
38 Lu Y, Sekido N, Yoshimi K, et al. Microstructures and mechanical properties of Mg/Zr nanostructured multilayers with coherent interface [J]. Thin Solid Films, 2020, 712: 138314
doi: 10.1016/j.tsf.2020.138314
39 Zhang Y F, Xue S, Li Q, et al. Size dependent strengthening in high strength nanotwinned Al/Ti multilayers [J]. Acta Mater., 2019, 175: 466
doi: 10.1016/j.actamat.2019.06.028
40 Zhang J Y, Wu K, Liu G, et al. Mechanical properties and irradiation tolerance of metallic nanolaminates [J]. Mater. China, 2018, 37: 575
40 张金钰, 吴 凯, 刘 刚 等. 金属纳米叠层材料的力学性能与辐照损伤容限 [J]. 中国材料进展, 2018, 37: 575
41 Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
doi: 10.1016/j.actamat.2005.06.025
42 Zhao Y F, Wang Y Q, Wu K, et al. Unique mechanical properties of Cu/(NbMoTaW) nanolaminates [J]. Scr. Mater., 2018, 154: 154
doi: 10.1016/j.scriptamat.2018.05.042
43 Wen S P, Zong R L, Zeng F, et al. Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers [J]. J. Mater. Res., 2007, 22: 3423
doi: 10.1557/JMR.2007.0423
44 Li Y P, Zhu X F, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation [J]. J. Mater. Res., 2009, 24: 728
doi: 10.1557/jmr.2009.0092
45 Zeng Y, Hunter A, Beyerlein I J, et al. A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces [J]. Int. J. Plast., 2016, 79: 293
doi: 10.1016/j.ijplas.2015.09.001
46 Feng H, Cui S Y, Chen H T, et al. A molecular dynamics investigation into deformation mechanism of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates [J]. Surf. Coat. Technol., 2020, 401: 126325
doi: 10.1016/j.surfcoat.2020.126325
47 Jiang L, Powers M, Cui Y, et al. Microstructure and mechanical properties of nanoscale Cu/(Ta50Nb25Mo25) multilayers [J]. Mater. Sci. Eng., 2021, A799: 140200
48 Tian Y Y, Li J, Luo G J, et al. Tribological property and subsurface damage of nanotwinned Cu/FeCoCrNi high entropy alloy nanolaminates at various scratching velocities and normal loads [J]. Tribol. Int., 2022, 169: 107435
doi: 10.1016/j.triboint.2022.107435
49 Wang Y, Zhu X Y, Liu G M, et al. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers [J]. Acta Metall. Sin., 2017, 53: 183
49 王 尧, 朱晓莹, 刘贵民 等. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性 [J]. 金属学报, 2017, 53: 183
50 Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scr. Mater., 2006, 54: 1913
doi: 10.1016/j.scriptamat.2006.02.022
51 Wei Q, Cheng S, Ramesh K T, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng., 2004, A381: 71
52 Miyamoto H, Ota K, Mimaki T. Viscous nature of deformation of ultra-fine grain aluminum processed by equal-channel angular pressing [J]. Scr. Mater., 2006, 54: 1721
doi: 10.1016/j.scriptamat.2006.02.016
53 Kalkman A J, Verbruggen A H, Radelaar S. High-temperature tensile tests and activation volume measurement of free-standing submicron Al films [J]. J. Appl. Phys., 2002, 92: 6612
doi: 10.1063/1.1518783
54 Dallatorre F, Spatig P, Schaublin R, et al. Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J]. Acta Mater., 2005, 53: 2337
doi: 10.1016/j.actamat.2005.01.041
55 Wang Y M, Hamza A V, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta Mater., 2006, 54: 2715
doi: 10.1016/j.actamat.2006.02.013
56 Jia D, Ramesh K T, Ma E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron [J]. Acta Mater., 2003, 51: 3495
doi: 10.1016/S1359-6454(03)00169-1
57 Wei Q, Kecskes L, Jiao T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Mater., 2004, 52: 1859
doi: 10.1016/j.actamat.2003.12.025
58 Wei Q, Jiao T, Mathaudhu S N, et al. Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE) [J]. Mater. Sci. Eng., 2003, A358: 266
59 Wei Q, Ramesh K T, Ma E, et al. Plastic flow localization in bulk tungsten with ultrafine microstructure [J]. Appl. Phys. Lett., 2005, 86: 101907
doi: 10.1063/1.1875754
60 Wei Q, Jiao T, Ramesh K T, et al. Nano-structured vanadium: Processing and mechanical properties under quasi-static and dynamic compression [J]. Scr. Mater., 2004, 50: 359
doi: 10.1016/j.scriptamat.2003.10.010
61 Wu D, Wang X L, Nieh T G. Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals [J]. J. Phys., 2014, 47D: 175303
62 Feng X B, Surjadi J U, Li X C, et al. Size dependency in stacking fault-mediated ultrahard high-entropy alloy thin films [J]. J. Alloys Compd., 2020, 844: 156187
doi: 10.1016/j.jallcom.2020.156187
63 Feng X B, Fu W, Zhang J Y, et al. Effects of nanotwins on the mechanical properties of Al x CoCrFeNi high entropy alloy thin films [J]. Scr. Mater., 2017, 139: 71
doi: 10.1016/j.scriptamat.2017.06.009
64 Ma Y, Feng Y H, Debela T T, et al. Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures [J]. Int. J. Refract. Met. Hard Mater, 2016, 54: 395
doi: 10.1016/j.ijrmhm.2015.08.010
65 Xiao L L, Huang P, Wang F. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86: 251
doi: 10.1016/j.jmst.2021.01.046
66 Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films [J]. Int. J. Plast., 2017, 95: 264
doi: 10.1016/j.ijplas.2017.04.013
67 Carpenter J S, Misra A, Uchic M D, et al. Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression [J]. Appl. Phys. Lett., 2012, 101: 051901
68 Niu J J, Zhang J Y, Liu G, et al. Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films [J]. Acta Mater., 2012, 60: 3677
doi: 10.1016/j.actamat.2012.03.052
69 Zhou Q, Li J J, Wang F, et al. Strain rate sensitivity of Cu/Ta multilayered films: Comparison between grain boundary and heterophase interface [J]. Scr. Mater., 2016, 111: 123
doi: 10.1016/j.scriptamat.2015.08.031
70 Zhou Q, Wang F, Huang P, et al. Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers [J]. Thin Solid Films, 2014, 571: 253
doi: 10.1016/j.tsf.2014.03.061
71 Wang Y Q, Zhang J Y, Liang X Q, et al. Size- and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu-Zr films [J]. Acta Mater., 2015, 95: 132
doi: 10.1016/j.actamat.2015.05.007
72 Zhang H X, Hong M Q, Xiao X H, et al. Research progress on radiation tolerance of multilayer nanofilms [J]. Nucl. Phys. Rev., 2013, 30: 451
72 张红秀, 洪梦庆, 肖湘衡 等. 抗辐照纳米多层膜研究进展 [J]. 原子核物理评论, 2013, 30: 451
73 Yang W F, Pang J Y, Zheng S J, et al. Interface effects on he ion irradiation in nanostructured materials [J]. Materials (Basel), 2019, 12: 2639
doi: 10.3390/ma12162639
74 Gao J, Liu Z J, Wan F R. Limited effect of twin boundaries on radiation damage [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 72
doi: 10.1007/s40195-015-0363-0
75 Kashinath A, Misra A, Demkowicz M J. Stable storage of helium in nanoscale platelets at semicoherent interfaces [J]. Phys. Rev. Lett., 2013, 110: 086101
76 Shi S, He M R, Jin K, et al. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys [J]. J. Nucl. Mater., 2018, 501: 132
doi: 10.1016/j.jnucmat.2018.01.015
77 Chen Y, Li N, Bufford D C, et al. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers [J]. J. Nucl. Mater., 2016, 475: 274
doi: 10.1016/j.jnucmat.2016.04.009
78 Chen H H, Zhao Y F, Zhang J Y, et al. He-ion irradiation effects on the microstructure stability and size-dependent mechanical behavior of high entropy alloy/Cu nanotwinned nanolaminates [J]. Int. J. Plast., 2020, 133: 102839
doi: 10.1016/j.ijplas.2020.102839
79 Wei Q M, Li N, Mara N, et al. Suppression of irradiation hardening in nanoscale V/Ag multilayers [J]. Acta Mater., 2011, 59: 6331
doi: 10.1016/j.actamat.2011.06.043
80 Soare M A, Curtin W A. Single-mechanism rate theory for dynamic strain aging in fcc metals [J]. Acta Mater., 2008, 56: 4091
doi: 10.1016/j.actamat.2008.04.030
81 Wu Y, Bönisch M, Alkan S, et al. Experimental determination of latent hardening coefficients in FeMnNiCoCr [J]. Int. J. Plast., 2018, 105: 239
doi: 10.1016/j.ijplas.2018.02.016
82 Liu Y, Tang P Z, Yang K M, et al. Research progress on the interface design and interface response of irradiation resistant metal-based nanostructured materials [J]. Acta Metall. Sin., 2021, 57: 150
82 刘 悦, 汤鹏正, 杨昆明 等. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展 [J]. 金属学报, 2021, 57: 150
83 Chen Y, Fu E, Yu K, et al. Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces [J]. J. Mater. Res., 2015, 30: 1300
doi: 10.1557/jmr.2015.24
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[8] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.