|
|
金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展 |
张金钰( ), 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军 |
西安交通大学 金属材料强度国家重点实验室 西安 710049 |
|
Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers |
ZHANG Jinyu( ), QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun |
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
Jinyu ZHANG,
Qimeng QU,
Yaqiang WANG,
Kai WU,
Gang LIU,
Jun SUN.
Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. Acta Metall Sin, 2022, 58(11): 1371-1384.
1 |
Armstrong D E J, Britton T B. Effect of dislocation density on improved radiation hardening resistance of nano-structured tungsten-rhenium [J]. Mater. Sci. Eng., 2014, A611: 388
|
2 |
Huang H F, Zhang W, De Los Reyes M, et al. Mitigation of He embrittlement and swelling in nickel by dispersed SiC nanoparticles [J]. Mater. Des., 2016, 90: 359
doi: 10.1016/j.matdes.2015.10.147
|
3 |
Zhang Y, Yu C, Zhou T, et al. Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels [J]. Mater. Des., 2015, 88: 675
doi: 10.1016/j.matdes.2015.09.056
|
4 |
Chen F D. Radiation damage studies of the novel Cr/W metallic multilayer nanocomposites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
|
4 |
陈飞达. 新型铬/钨纳米金属多层膜复合材料的辐照损伤研究 [D]. 南京: 南京航空航天大学, 2016
|
5 |
Koehler J S. Attempt to design a strong solid [J]. Phys. Rev., 1970, 2B: 547
|
6 |
Zhang S S, Wang J B, Su Y Y. Current research status of nano-multilayer films [J]. Mater. Rep., 2014, 28(21): 147
|
6 |
张山山, 王锦标, 苏永要. 纳米多层膜的研究现状 [J]. 材料导报, 2014, 28(21): 147
|
7 |
Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission [J]. Science, 2010, 327: 1631
doi: 10.1126/science.1183723
|
8 |
Chen Z, Niu L L, Wang Z L, et al. A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain [J]. Acta Mater., 2018, 147: 100
doi: 10.1016/j.actamat.2018.01.015
|
9 |
Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
doi: 10.1103/PhysRevLett.100.136102
|
10 |
Zhang J Y, Zeng F L, Wu K, et al. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions [J]. Mater. Sci. Eng., 2016, A673: 530
|
11 |
Chen F D, Tang X B, Yang Y H, et al. Atomic simulations of Fe/Ni multilayer nanocomposites on the radiation damage resistance [J]. J. Nucl. Mater., 2016, 468: 164
doi: 10.1016/j.jnucmat.2015.11.028
|
12 |
Chen Y, Liu Y, Fu E G, et al. Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers [J]. Acta Mater., 2015, 84: 393
doi: 10.1016/j.actamat.2014.10.061
|
13 |
Wang M, Beyerlein I J, Zhang J, et al. Defect-interface interactions in irradiated Cu/Ag nanocomposites [J]. Acta Mater., 2018, 160: 211
doi: 10.1016/j.actamat.2018.09.003
|
14 |
Yu K Y, Sun C, Chen Y, et al. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study [J]. Philos. Mag., 2013, 93: 3547
doi: 10.1080/14786435.2013.815378
|
15 |
Liang X Q, Wang Y Q, Zhao J T, et al. Size- and ion-dose-dependent microstructural evolution and hardening in He-irradiated miscible Cu/Zr crystalline/crystalline nanolaminates [J]. Surf. Coat. Technol., 2019, 366: 255
doi: 10.1016/j.surfcoat.2019.03.037
|
16 |
Bagchi S, Anwar S, Lalla N P. Effect of swift heavy ion irradiation in Fe/W multilayer structures [J]. Appl. Surf. Sci., 2009, 256: 541
doi: 10.1016/j.apsusc.2009.08.029
|
17 |
Chen F D, Tang X B, Huang H, et al. Surface damage and mechanical properties degradation of Cr/W multilayer films irradiated by Xe20+ [J]. Appl. Surf. Sci., 2015, 357: 1225
doi: 10.1016/j.apsusc.2015.09.170
|
18 |
Wu S H, Cheng P M, Wu K, et al. Effect of He-irradiation fluence on the size-dependent hardening and deformation of nanostructured Mo/Zr multilayers [J]. Int. J. Plast., 2018, 111: 36
doi: 10.1016/j.ijplas.2018.07.008
|
19 |
Chen E Y, Deo C, Dingreville R. Irradiation resistance of nanostructured interfaces in Zr-Nb metallic multilayers [J]. J. Mater. Res., 2019, 34: 2239
doi: 10.1557/jmr.2019.42
|
20 |
Höchbauer T, Misra A, Hattar K, et al. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites [J]. J. Appl. Phys., 2005, 98: 123516
doi: 10.1063/1.2149168
|
21 |
Tan Y Q, Wang X M, Zhu S, et al. Research progress on strengthening and ductilizing high-entropy alloys [J]. Mater. Rep., 2020, 34: 5120
|
21 |
谭雅琴, 王晓明, 朱 胜 等. 高熵合金强韧化的研究进展 [J]. 材料导报, 2020, 34: 5120
|
22 |
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
|
23 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564
pmid: 27976669
|
24 |
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
|
25 |
Zhao Y F, Wang Y Q, Wu K, et al. Interface-affected mechanical properties and strengthening mechanisms in heterogeneous high entropy alloy nanolaminates [J]. J. Alloys Compd., 2022, 903: 163915
doi: 10.1016/j.jallcom.2022.163915
|
26 |
Zhu X Y, Pan F. Research progress in mechanical properties of metal nanomultilayers [J]. Rare Met. Lett., 2011, 30(10): 1
|
26 |
朱晓莹, 潘 峰. 金属纳米多层膜力学性能研究进展 [J]. 中国材料进展, 2011, 30(10): 1
|
27 |
Zhao Y F, Feng X B, Zhang J Y, et al. Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys [J]. Nanoscale, 2020, 12: 14135
doi: 10.1039/d0nr02483j
pmid: 32597912
|
28 |
Zhao Y F, Zhang J Y, Wang Y Q, et al. Size-dependent mechanical properties and deformation mechanisms in Cu/NbMoTaW nanolaminates [J]. Sci. China Mater., 2020, 63: 444
doi: 10.1007/s40843-019-1195-7
|
29 |
Zhao Y F, Zhang J Y, Wang Y Q, et al. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68: 16
doi: 10.1016/j.jmst.2020.06.042
|
30 |
Zhao Y F, Zhang J Y, Wang Y Q, et al. Unusual plastic deformation behavior of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates [J]. Nanoscale, 2019, 11: 11340
doi: 10.1039/c9nr00836e
pmid: 31166340
|
31 |
Zhang J Y, Liu G, Sun J. Size effects on deformation and fracture behavior of nanostructured metallic multilayers [J]. Acta Metall. Sin., 2014, 50: 169
doi: 10.3724/SP.J.1037.2013.00599
|
31 |
张金钰, 刘 刚, 孙 军. 纳米金属多层膜的变形与断裂行为及其尺寸效应 [J]. 金属学报, 2014, 50: 169
doi: 10.3724/SP.J.1037.2013.00599
|
32 |
Zhao Y F, Chen H H, Zhang D D, et al. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116: 199
doi: 10.1016/j.jmst.2021.10.036
|
33 |
Chen Y, Liu Y, Sun C, et al. Microstructure and strengthening mechanisms in Cu/Fe multilayers [J]. Acta Mater., 2012, 60: 6312
doi: 10.1016/j.actamat.2012.08.005
|
34 |
Liu Y, Bufford D, Wang H, et al. Mechanical properties of highly textured Cu/Ni multilayers [J]. Acta Mater., 2011, 59: 1924
doi: 10.1016/j.actamat.2010.11.057
|
35 |
Liu Y, Chen Y, Yu K Y, et al. Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers [J]. Int. J. Plast., 2013, 49: 152
doi: 10.1016/j.ijplas.2013.03.005
|
36 |
Zhang J Y, Zhang P, Zhang X, et al. Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers [J]. Mater. Sci. Eng., 2012, A545: 118
|
37 |
Hou Z Q, Zhang J Y, Li J, et al. Phase transformation-induced strength softening in Ti/Ta nanostructured multilayers: Coherent interface vs phase boundary [J]. Mater. Sci. Eng., 2017, A684: 78
|
38 |
Lu Y, Sekido N, Yoshimi K, et al. Microstructures and mechanical properties of Mg/Zr nanostructured multilayers with coherent interface [J]. Thin Solid Films, 2020, 712: 138314
doi: 10.1016/j.tsf.2020.138314
|
39 |
Zhang Y F, Xue S, Li Q, et al. Size dependent strengthening in high strength nanotwinned Al/Ti multilayers [J]. Acta Mater., 2019, 175: 466
doi: 10.1016/j.actamat.2019.06.028
|
40 |
Zhang J Y, Wu K, Liu G, et al. Mechanical properties and irradiation tolerance of metallic nanolaminates [J]. Mater. China, 2018, 37: 575
|
40 |
张金钰, 吴 凯, 刘 刚 等. 金属纳米叠层材料的力学性能与辐照损伤容限 [J]. 中国材料进展, 2018, 37: 575
|
41 |
Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites [J]. Acta Mater., 2005, 53: 4817
doi: 10.1016/j.actamat.2005.06.025
|
42 |
Zhao Y F, Wang Y Q, Wu K, et al. Unique mechanical properties of Cu/(NbMoTaW) nanolaminates [J]. Scr. Mater., 2018, 154: 154
doi: 10.1016/j.scriptamat.2018.05.042
|
43 |
Wen S P, Zong R L, Zeng F, et al. Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers [J]. J. Mater. Res., 2007, 22: 3423
doi: 10.1557/JMR.2007.0423
|
44 |
Li Y P, Zhu X F, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation [J]. J. Mater. Res., 2009, 24: 728
doi: 10.1557/jmr.2009.0092
|
45 |
Zeng Y, Hunter A, Beyerlein I J, et al. A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces [J]. Int. J. Plast., 2016, 79: 293
doi: 10.1016/j.ijplas.2015.09.001
|
46 |
Feng H, Cui S Y, Chen H T, et al. A molecular dynamics investigation into deformation mechanism of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates [J]. Surf. Coat. Technol., 2020, 401: 126325
doi: 10.1016/j.surfcoat.2020.126325
|
47 |
Jiang L, Powers M, Cui Y, et al. Microstructure and mechanical properties of nanoscale Cu/(Ta50Nb25Mo25) multilayers [J]. Mater. Sci. Eng., 2021, A799: 140200
|
48 |
Tian Y Y, Li J, Luo G J, et al. Tribological property and subsurface damage of nanotwinned Cu/FeCoCrNi high entropy alloy nanolaminates at various scratching velocities and normal loads [J]. Tribol. Int., 2022, 169: 107435
doi: 10.1016/j.triboint.2022.107435
|
49 |
Wang Y, Zhu X Y, Liu G M, et al. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers [J]. Acta Metall. Sin., 2017, 53: 183
|
49 |
王 尧, 朱晓莹, 刘贵民 等. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性 [J]. 金属学报, 2017, 53: 183
|
50 |
Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scr. Mater., 2006, 54: 1913
doi: 10.1016/j.scriptamat.2006.02.022
|
51 |
Wei Q, Cheng S, Ramesh K T, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals [J]. Mater. Sci. Eng., 2004, A381: 71
|
52 |
Miyamoto H, Ota K, Mimaki T. Viscous nature of deformation of ultra-fine grain aluminum processed by equal-channel angular pressing [J]. Scr. Mater., 2006, 54: 1721
doi: 10.1016/j.scriptamat.2006.02.016
|
53 |
Kalkman A J, Verbruggen A H, Radelaar S. High-temperature tensile tests and activation volume measurement of free-standing submicron Al films [J]. J. Appl. Phys., 2002, 92: 6612
doi: 10.1063/1.1518783
|
54 |
Dallatorre F, Spatig P, Schaublin R, et al. Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J]. Acta Mater., 2005, 53: 2337
doi: 10.1016/j.actamat.2005.01.041
|
55 |
Wang Y M, Hamza A V, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni [J]. Acta Mater., 2006, 54: 2715
doi: 10.1016/j.actamat.2006.02.013
|
56 |
Jia D, Ramesh K T, Ma E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron [J]. Acta Mater., 2003, 51: 3495
doi: 10.1016/S1359-6454(03)00169-1
|
57 |
Wei Q, Kecskes L, Jiao T, et al. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation [J]. Acta Mater., 2004, 52: 1859
doi: 10.1016/j.actamat.2003.12.025
|
58 |
Wei Q, Jiao T, Mathaudhu S N, et al. Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE) [J]. Mater. Sci. Eng., 2003, A358: 266
|
59 |
Wei Q, Ramesh K T, Ma E, et al. Plastic flow localization in bulk tungsten with ultrafine microstructure [J]. Appl. Phys. Lett., 2005, 86: 101907
doi: 10.1063/1.1875754
|
60 |
Wei Q, Jiao T, Ramesh K T, et al. Nano-structured vanadium: Processing and mechanical properties under quasi-static and dynamic compression [J]. Scr. Mater., 2004, 50: 359
doi: 10.1016/j.scriptamat.2003.10.010
|
61 |
Wu D, Wang X L, Nieh T G. Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals [J]. J. Phys., 2014, 47D: 175303
|
62 |
Feng X B, Surjadi J U, Li X C, et al. Size dependency in stacking fault-mediated ultrahard high-entropy alloy thin films [J]. J. Alloys Compd., 2020, 844: 156187
doi: 10.1016/j.jallcom.2020.156187
|
63 |
Feng X B, Fu W, Zhang J Y, et al. Effects of nanotwins on the mechanical properties of Al x CoCrFeNi high entropy alloy thin films [J]. Scr. Mater., 2017, 139: 71
doi: 10.1016/j.scriptamat.2017.06.009
|
64 |
Ma Y, Feng Y H, Debela T T, et al. Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures [J]. Int. J. Refract. Met. Hard Mater, 2016, 54: 395
doi: 10.1016/j.ijrmhm.2015.08.010
|
65 |
Xiao L L, Huang P, Wang F. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86: 251
doi: 10.1016/j.jmst.2021.01.046
|
66 |
Feng X B, Zhang J Y, Wang Y Q, et al. Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films [J]. Int. J. Plast., 2017, 95: 264
doi: 10.1016/j.ijplas.2017.04.013
|
67 |
Carpenter J S, Misra A, Uchic M D, et al. Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression [J]. Appl. Phys. Lett., 2012, 101: 051901
|
68 |
Niu J J, Zhang J Y, Liu G, et al. Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films [J]. Acta Mater., 2012, 60: 3677
doi: 10.1016/j.actamat.2012.03.052
|
69 |
Zhou Q, Li J J, Wang F, et al. Strain rate sensitivity of Cu/Ta multilayered films: Comparison between grain boundary and heterophase interface [J]. Scr. Mater., 2016, 111: 123
doi: 10.1016/j.scriptamat.2015.08.031
|
70 |
Zhou Q, Wang F, Huang P, et al. Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers [J]. Thin Solid Films, 2014, 571: 253
doi: 10.1016/j.tsf.2014.03.061
|
71 |
Wang Y Q, Zhang J Y, Liang X Q, et al. Size- and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu-Zr films [J]. Acta Mater., 2015, 95: 132
doi: 10.1016/j.actamat.2015.05.007
|
72 |
Zhang H X, Hong M Q, Xiao X H, et al. Research progress on radiation tolerance of multilayer nanofilms [J]. Nucl. Phys. Rev., 2013, 30: 451
|
72 |
张红秀, 洪梦庆, 肖湘衡 等. 抗辐照纳米多层膜研究进展 [J]. 原子核物理评论, 2013, 30: 451
|
73 |
Yang W F, Pang J Y, Zheng S J, et al. Interface effects on he ion irradiation in nanostructured materials [J]. Materials (Basel), 2019, 12: 2639
doi: 10.3390/ma12162639
|
74 |
Gao J, Liu Z J, Wan F R. Limited effect of twin boundaries on radiation damage [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 72
doi: 10.1007/s40195-015-0363-0
|
75 |
Kashinath A, Misra A, Demkowicz M J. Stable storage of helium in nanoscale platelets at semicoherent interfaces [J]. Phys. Rev. Lett., 2013, 110: 086101
|
76 |
Shi S, He M R, Jin K, et al. Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys [J]. J. Nucl. Mater., 2018, 501: 132
doi: 10.1016/j.jnucmat.2018.01.015
|
77 |
Chen Y, Li N, Bufford D C, et al. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers [J]. J. Nucl. Mater., 2016, 475: 274
doi: 10.1016/j.jnucmat.2016.04.009
|
78 |
Chen H H, Zhao Y F, Zhang J Y, et al. He-ion irradiation effects on the microstructure stability and size-dependent mechanical behavior of high entropy alloy/Cu nanotwinned nanolaminates [J]. Int. J. Plast., 2020, 133: 102839
doi: 10.1016/j.ijplas.2020.102839
|
79 |
Wei Q M, Li N, Mara N, et al. Suppression of irradiation hardening in nanoscale V/Ag multilayers [J]. Acta Mater., 2011, 59: 6331
doi: 10.1016/j.actamat.2011.06.043
|
80 |
Soare M A, Curtin W A. Single-mechanism rate theory for dynamic strain aging in fcc metals [J]. Acta Mater., 2008, 56: 4091
doi: 10.1016/j.actamat.2008.04.030
|
81 |
Wu Y, Bönisch M, Alkan S, et al. Experimental determination of latent hardening coefficients in FeMnNiCoCr [J]. Int. J. Plast., 2018, 105: 239
doi: 10.1016/j.ijplas.2018.02.016
|
82 |
Liu Y, Tang P Z, Yang K M, et al. Research progress on the interface design and interface response of irradiation resistant metal-based nanostructured materials [J]. Acta Metall. Sin., 2021, 57: 150
|
82 |
刘 悦, 汤鹏正, 杨昆明 等. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展 [J]. 金属学报, 2021, 57: 150
|
83 |
Chen Y, Fu E, Yu K, et al. Enhanced radiation tolerance in immiscible Cu/Fe multilayers with coherent and incoherent layer interfaces [J]. J. Mater. Res., 2015, 30: 1300
doi: 10.1557/jmr.2015.24
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|