Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 703-712    DOI: 10.11900/0412.1961.2021.00285
  本期目录 | 过刊浏览 |
冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能
冯力1,2(), 王贵平1, 马凯1, 杨伟杰1, 安国升1,2, 李文生1,2
1兰州理工大学 材料科学与工程学院 兰州 730050
2兰州理工大学 有色金属先进加工与再利用国家重点实验室 兰州 730050
Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting
FENG Li1,2(), WANG Guiping1, MA Kai1, YANG Weijie1, AN Guosheng1,2, LI Wensheng1,2
1College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
Li FENG, Guiping WANG, Kai MA, Weijie YANG, Guosheng AN, Wensheng LI. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. Acta Metall Sin, 2023, 59(5): 703-712.

全文: PDF(4583 KB)   HTML
摘要: 

通过冷喷涂辅助感应重熔技术在45钢基体成功制备AlCo x CrFeNiCu (x = 0、0.5、1.0、1.5、2.0,摩尔分数)高熵合金涂层。研究了Co元素含量对冷喷涂辅助合成高熵合金涂层物相、微观组织的影响。结果表明:通过低压冷喷涂辅助感应重熔技术合成的AlCo x CrFeNiCu高熵合金涂层由fcc + bcc双相混合结构组成,涂层组织为等轴树枝晶+晶间组织,其中枝晶为bcc结构,晶间组织为fcc结构。Co含量的变化会引起AlCo x CrFeNiCu高熵合金涂层的晶格畸变状态发生变化,当x = 1.0时,AlCo1CrFeNiCu高熵合金涂层的晶格应变最大。Co元素含量增加会促进AlCo x CrFeNiCu高熵合金涂层中的枝晶数目增加,同时涂层中的树枝晶尺寸也随着Co元素含量增加而增大。涂层中的树枝晶富集Fe、Cr、Co、Ni元素,枝晶间富集Cu元素,Al均匀地分布在整个涂层中。随着Co含量增加,AlCo x CrFeNiCu高熵合金涂层的硬度先增加后减小;当x = 1.0时,AlCo1CrFeNiCu高熵合金涂层的硬度达到562.5 HV,此时涂层的摩擦系数最小,为0.352。

关键词 冷喷涂感应重熔高熵合金涂层摩擦磨损    
Abstract

High-entropy alloy coatings have a very wide range of industrial applications due to their outstanding mechanical properties and good wear resistance. High-entropy alloy coatings of AlCo x CrFeNiCu (x = 0, 0.5, 1.0, 1.5, 2.0, mole fraction) on 45 steel substrates were successfully produced by cold spraying assisted induction remelting approach. The effect of Co content on the phase and microstructure of cold spraying-assisted high-entropy alloy coating was investigated. The findings reveal that the AlCo x -CrFeNiCu high-entropy alloy coating produced using low-pressure cold spraying assisted induction remelting technique comprises of fcc + bcc two-phase mixed structure, with an equiaxed dendrite + interdendritic structure, with the dendrite being bcc and the interdendritic structure being fcc. The lattice distortion state of AlCo x CrFeNiCu high-entropy alloy coating changes as the Co element changes; when x = 1.0, the lattice strain of AlCo1CrFeNiCu high-entropy alloy coating is the largest. Increases in Co content promote an increase in dendrite number in AlCo x CrFeNiCu high-entropy alloy coatings, as well as dendrite. The EDS analysis demonstrated that Fe, Cr, Co, and Ni were enriched in the dendrite, Cu was enriched in the interdendrite, and Al was evenly distributed throughout the coating. With an increase in Co content, the hardness of AlCo x CrFeNiCu high-entropy alloy coating increases first and then decreases. When x = 1.0, the hardness of the AlCo1CrFeNiCu high-entropy alloy coating is 562.5 HV, and the coating minimum's friction coefficient is 0.352.

Key wordscold spraying    induction remelting    high-entropy alloy coating    friction and wear
收稿日期: 2021-07-12     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(52075234);国家重点研发计划项目(2016YFE0111400)
作者简介: 冯 力,男,1981年生,教授,博士
CoatingAlCoCrFeNiCu
AlCrFeNiCu10.9014.625.320.528.7
AlCo0.5CrFeNiCu10.38.711.824.618.725.9
AlCo1CrFeNiCu9.015.89.522.318.924.5
AlCo1.5CrFeNiCu8.625.29.220.914.721.4
AlCo2CrFeNiCu6.531.710.018.213.520.1
表1  感应重熔合成高熵合金涂层各元素的含量 (mass fraction / %)
图1  冷喷涂AlCo x CrFeNiCu预制合金粉体涂层横截面形貌的SEM像
图2  感应重熔AlCo x CrFeNiCu高熵合金涂层的XRD谱
Coatingfcc phasebcc phase
AlCrFeNiCu0.36540.2873
AlCo0.5CrFeNiCu0.36610.2878
AlCo1CrFeNiCu0.36680.2884
AlCo1.5CrFeNiCu0.36500.2873
AlCo2CrFeNiCu0.36410.2866
表2  AlCo x CrFeNiCu高熵合金涂层各相的晶格常数 (nm)
图3  感应重熔AlCo x CrFeNiCu高熵合金表面形貌的SEM像
图4  AlCo1CrFeNiCu高熵合金涂层的TEM分析
图5  感应重熔AlCo1CrFeNiCu高熵合金涂层截面SEM像、表面SEM像和EDS
图6  AlCo x CrFeNiCu高熵合金涂层中fcc和bcc相晶格应变(εfcc和εbcc)随原子尺寸差异(δ)的变化
图7  AlCo x CrFeNiCu高熵合金涂层和45钢基体的硬度和摩擦系数
图8  AlCo x CrFeNiCu高熵合金涂层的平均磨损率和摩擦系数
图9  AlCo x CrFeNiCu高熵合金涂层磨损形貌的SEM像
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
2 Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metall. Mater. Trans., 2004, 35A: 2533
3 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Adv. Eng. Mater., 2004, 6: 74
doi: 10.1002/(ISSN)1527-2648
4 George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
5 Yao X F, Wei J P, Lv Y K, et al. Precipitation σ phase evoluation and mechanical properties of (CoCrFeMnNi)97.02Mo2.98 high entropy alloy[J]. Acta Metall. Sin., 2020, 56: 769
5 姚小飞, 魏敬鹏, 吕煜坤 等. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56: 769
doi: 10.11900/0412.1961.2019.00330
6 Cao Y H, Wang L L, Wu Q F, et al. Partially recrystallized structure and mechanical properties of CoCrFeNiMo0.2 high-entropy alloy[J]. Acta Metall. Sin., 2020, 56: 333
6 曹育菡, 王理林, 吴庆峰 等. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56: 333
doi: 10.11900/0412.1961.2019.00274
7 Huang C, Du C W, Dai C D, et al. Research progress of high-entropy alloy coatings[J]. Surf. Technol., 2019, 48(11): 15
7 黄 灿, 杜翠薇, 代春朵 等. 高熵合金涂层的研究进展[J]. 表面技术, 2019, 48(11): 15
8 Ma M X, Liu Y X, Gu Y, et al. Synthesis of Al x CoCrNiMo high entropy alloy coatings by laser cladding[J]. Appl. Laser, 2010, 30: 433
doi: 10.3788/AL
8 马明星, 柳沅汛, 谷 雨 等. 激光制备Al x CoCrNiMo高熵合金涂层的研究[J]. 应用激光, 2010, 30: 433
9 Yao C Z, Wei B H, Zhang P, et al. Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm[J]. J. Rare Earths, 2011, 29: 133
doi: 10.1016/S1002-0721(10)60418-8
10 Hsueh H T, Shen W J, Tsai M H, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100 - x N x [J]. Surf. Coat. Technol., 2012, 206: 4106
doi: 10.1016/j.surfcoat.2012.03.096
11 Ren B, Liu Z X, Li D M, et al. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution[J]. Mater. Corros., 2012, 63: 828
12 Chen J M, Wang L Q, Zhou J S, et al. Research progress of laser clad Ni-based coatings[J]. China Surf. Eng., 2011, 24(2): 13
12 陈建敏, 王凌倩, 周健松 等. 激光熔覆Ni基涂层研究进展[J]. 中国表面工程, 2011, 24(2): 13
13 Chen Y B, Ren Z A. A study of processing Cu/WCP composite coatings by laser cladding[J]. Trans. China Weld. Inst., 2002, 23(1): 19
13 陈彦宾, 任振安. 激光熔覆Cu/WCP复合涂层[J]. 焊接学报, 2002, 23(1): 19
14 Shu D L. Mechanical Properties of Engineering Materials[M]. 2nd Ed., Beijing: China Machinery Industry Press, 2004: 1
14 束德林. 工程材料力学性能[M]. 第2版. 北京: 机械工业出版社, 2004: 1
15 Zhang P L, Yan H, Xu P Q, et al. Fe-Ni-B-Si-Nb amorphous and nanocrystalline composite coating prepared by laser cladding and remelting[J]. Chin. J. Nonferrous Met., 2011, 21: 2846
15 张培磊, 闫 华, 徐培全 等. 激光熔覆和重熔制备Fe-Ni-B-Si-Nb系非晶纳米晶复合涂层[J]. 中国有色金属学报, 2011, 21: 2846
16 Hao W J, Sun R L, Niu W, et al. Study on microstructure and corrosion resistance of CoCrFeNiSi x high-entropy alloy coating by laser cladding[J]. Surf. Technol., 2021, 50(8): 343
16 郝文俊, 孙荣禄, 牛 伟 等. 激光熔覆CoCrFeNiSi x 高熵合金涂层组织及耐蚀性能研究[J]. 表面技术, 2021, 50(8): 343
17 Zhang C, Wu B Q, Wang Q T, et al. Microstructure and properties of FeCrNiCoMnB x high-entropy alloy coating prepared by laser cladding[J]. Rare Met. Mater. Eng., 2017, 46: 2639
17 张 冲, 吴炳乾, 王乾廷 等. 激光熔覆FeCrNiCoMnB x 高熵合金涂层的组织结构与性能[J]. 稀有金属材料与工程, 2017, 46: 2639
18 Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J]. Intermetallics, 2015, 60: 1
doi: 10.1016/j.intermet.2015.01.004
19 Huang Y S, Cai M H, Ye J W. Optical properties of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy[J]. Surf. Technol., 2016, 45(2): 129
19 黄元盛, 蔡铭洪, 叶均蔚. AlCoCrCu0.5NiFe高熵合金氧化物薄膜光学特性的研究[J]. 表面技术, 2016, 45(2): 129
20 Hung W J, Shun T T, Chiang C J. Effects of reducing Co content on microstructure and mechanical properties of Co x CrFeNiTi0.3 high-entropy alloys[J]. Mater. Chem. Phys., 2018, 210: 170
doi: 10.1016/j.matchemphys.2017.07.024
21 Feng L, Wang G P, An G S, et al. A method of in situ synthesis of low pressure cold sprayed CuNiCoFeCrAl alloy coating[P]. Chin Pat, 201910793715.X, 2019
21 冯 力, 王贵平, 安国升 等. 一种原位合成低压冷喷涂CuNiCoFeCrAl高熵合金涂层的制备方法[P]. 中国专利, 201910793715.X, 2019
22 Wang Y, Lu X X, Yuan N Y, et al. A novel nickel-copper alternating-deposition coating with excellent tribological and antibacterial property[J]. J. Alloys Compd., 2020, 849: 156222
doi: 10.1016/j.jallcom.2020.156222
23 Zhou Y J, Zhang Y, Wang F J, et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCu x Al1 - x solid-solution alloys[J]. Appl. Phys. Lett., 2008, 92: 241917
doi: 10.1063/1.2938690
24 Yu Y N. Principles of Metals[M]. Beijing: Metallurgical, Industry Press, 2000: 1
24 余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2000: 1
25 Guo L, Wu W Q, Ni S, et al. Effects of annealing on the microstructural evolution and phase transition in an AlCrCuFeNi2 high-entropy alloy[J]. Micron, 2017, 101: 69
doi: 10.1016/j.micron.2017.06.007
26 Han Z D, Chen N, Lu S Y, et al. Structures and corrosion properties of the AlCrFeNiMo0.5Ti x high entropy alloys[J]. Mater. Corros., 2018, 69: 641
[1] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[2] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[3] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[4] 李文亚, 张正茂, 徐雅欣, 宋志国, 殷硕. 冷喷涂Ni及镍基复合涂层研究进展[J]. 金属学报, 2022, 58(1): 1-16.
[5] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[6] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[7] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[8] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[9] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[10] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[11] 喻利花, 董鸿志, 许俊华. C含量对TiWCN复合膜微结构、力学性能和摩擦磨损性能的影响[J]. 金属学报, 2014, 50(11): 1350-1356.
[12] 王振生,张孟恩,杨双双,郭建亭,周兰章,陈志钢. NiAl-2.5Ta-7.5Cr-1B合金的微观组织、力学性能与摩擦磨损特性[J]. 金属学报, 2013, 49(11): 1325-1332.
[13] 魏祥飞,张平则,魏东博,陈小虎,王琼,王若男. γ-TiAl合金表面Cr-W共渗合金层的摩擦磨损性能研究[J]. 金属学报, 2013, 49(11): 1406-1410.
[14] 朱传琳,张俊宝,程从前,赵杰. 变形温度对冷喷涂304不锈钢涂层材料高温变形行为的影响[J]. 金属学报, 2013, 49(10): 1275-1280.
[15] 许俊华 鞠洪博 喻利花. Mo含量对TiMoN薄膜微观组织和摩擦磨损性能的影响[J]. 金属学报, 2012, 48(9): 1132-1138.