Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1441-1458    DOI: 10.11900/0412.1961.2022.00322
  综述 本期目录 | 过刊浏览 |
高熵合金跨尺度异构强韧化及其力学性能研究进展
安子冰1, 毛圣成1(), 张泽1,2, 韩晓东1()
1.北京工业大学 材料与制造学部 固体微结构与性能研究所 北京 100124
2.浙江大学 材料科学与工程学院 杭州 310058
Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy
AN Zibing1, MAO Shengcheng1(), ZHANG Ze1,2, HAN Xiaodong1()
1.Institute of Microstructure and Properties of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2.Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
引用本文:

安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
Zibing AN, Shengcheng MAO, Ze ZHANG, Xiaodong HAN. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy[J]. Acta Metall Sin, 2022, 58(11): 1441-1458.

全文: PDF(7106 KB)   HTML
摘要: 

高熵合金突破了传统合金设计理念的桎梏,具有高强度、高硬度、高耐磨性及抗腐蚀性,是一种具有巨大发展前景的新型金属材料。然而,金属材料的强度与塑性之间存在倒置矛盾关系,高熵合金仍受困于这一难题。因此,设计开发兼具高强度与高塑性的高熵合金材料已成为目前研究热点与难点。近年来,异构设计理念在传统金属材料强韧化这一问题上得到发展,如何设计异构高熵合金以实现高熵合金强韧化,使合金兼具高强度与高塑性,引起了科研人员的重视。本文从异构显微组织尺度出发,综述了目前存在的异构显微结构设计方法,分析了不同异构组织对其强韧化机制及力学性能的影响,并对未来高强韧高熵合金显微结构设计进行了展望。

关键词 高熵合金异构强韧化力学性能    
Abstract

High-entropy alloys overcome the limitations posed by traditional alloys due to features such as high strength, toughness, high wear resistance, and corrosion resistance. These alloys are novel metallic materials with excellent application potential; however, typically an inverse relationship is observed between the strength and ductility of a metal, which includes high-entropy alloys. Therefore, the design and development of high entropy alloys with high strength and high ductility have become a limitation in current research. Recently, heterostructure design has achieved great success in strengthening and toughening traditional metallic materials. Heterostructured and high-entropy alloys has garnered much attention and research interest to realize the strength and toughness of high-entropy alloys with high strength and high ductility. This study reviews the existing design models for heterostructures from the heterostructure scale perspective. Furthermore, the effects of different heterostructures on the strengthening and toughening mechanism and mechanical properties were analyzed, and future microstructural designs with high strength and toughness were anticipated.

Key wordshigh-entropy alloy    heterostructure    strengthening and toughening    mechanical property
收稿日期: 2022-07-04     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目(2021YFA1200201);国家自然科学基金项目(52071003);国家自然科学基金项目(91860202);国家自然科学基金项目(51988101);北京市科技新星计划交叉学科合作课题项目(Z211100002121170);北京学者项目(PXM2020_014204_000021);高等学校学科创新引智计划(111计划)项目(DB18015)
作者简介: 韩晓东, xdhan@bjut.edu.cn,主要从事高空间分辨原位显微学技术及科学装置研发及金属材料塑性变形行为研究
安子冰,男,1993年生,博士
图1  异构高熵合金与传统合金以及均质高熵合金材料的强度-塑性对比[25,34,43,46~48]
图2  CoCrFeNiMn、CoCrFeNiPd[38]和HfNbTaTiV[49]高熵合金成分分布与力学性能
图3  (HfNbTiZr)98O2高熵合金显微结构及力学性能[56]
图4  CoCrNi合金显微结构及力学性能[65]
图5  VCoNi合金显微结构及元素分布[39]
图6  (FeCoNi)86Al7Ti7高熵合金显微结构与室温拉伸力学性能[34]
图7  Al0.5Cr0.9FeNi2.5V0.2和HfNbTiV合金显微结构与拉伸力学性能[72,73]
图8  Ni32.8Fe21.9Co21.9Cr10.9Al7.5Ti5.0高熵合金显微结构与拉伸力学性能[74]
图9  CoCrFeNiMn高熵合金拉伸变形前后显微结构特征[84]
图10  Fe20Co20Ni41Al19高熵合金鱼骨状显微结构[35]
图11  CoCrNi合金晶粒异构显微结构及异构结构中的异构变形诱导硬化[46]
图12  Co21.5Cr21.5Fe21.5Mn21.5Ni14高熵合金经过RASP处理后的梯度组织[42]
图13  粗晶、表面机械研磨处理(SMAT)和SMAT +时效处理样品拉伸力学性能[92]
1 Zherebtsov S, Salishchev G, Galeyev R, et al. Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation [J]. Mater. Trans., 2005, 46: 2020
doi: 10.2320/matertrans.46.2020
2 Chong Y, Zhang R P, Hooshmand M S, et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al [J]. Nat. Commun., 2021, 12: 6158
doi: 10.1038/s41467-021-26374-w pmid: 34697309
3 Huskins E L, Cao B, Ramesh K T. Strengthening mechanisms in an Al-Mg alloy [J]. Mater. Sci. Eng., 2010, A527: 1292
4 Altıparmak S C, Yardley V A, Shi Z S, et al. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing [J]. Int. J. Lightweight Mater. Manuf., 2021, 4: 246
5 Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580 pmid: 24686581
6 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
7 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
8 Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 633
doi: 10.3166/acsm.31.633-648
9 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
doi: 10.1007/s40843-017-9195-8
10 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
11 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
12 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
13 Ding Z Y, Cao B X, Luan J H, et al. Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys [J]. Corros. Sci., 2021, 184: 109365
doi: 10.1016/j.corsci.2021.109365
14 Geng Y S, Chen J, Tan H, et al. Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures [J]. Wear, 2020, 456-457: 203368
doi: 10.1016/j.wear.2020.203368
15 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
doi: 10.1002/adem.200700240
16 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
17 Oh H S, Kim S J, Odbadrakh K, et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys [J]. Nat. Commun., 2019, 10: 2090
doi: 10.1038/s41467-019-10012-7 pmid: 31064988
18 Zhou Z Q, Zhou Y J, He Q F, et al. Machine learning guided appraisal and exploration of phase design for high entropy alloys [J]. npj Comput. Mater., 2019, 5: 128
doi: 10.1038/s41524-019-0265-1
19 Wang Z J, Huang Y H, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scr. Mater., 2015, 94: 28
doi: 10.1016/j.scriptamat.2014.09.010
20 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
doi: 10.1016/j.jallcom.2011.02.171
21 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
22 Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
doi: 10.1002/adma.201701678
23 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
24 Rao J C, Diao H Y, Ocelík V, et al. Secondary phases in Al x CoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal [J]. Acta Mater., 2017, 131: 206
doi: 10.1016/j.actamat.2017.03.066
25 Park J M, Yang D C, Kim H J, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening [J]. Mater. Res. Lett., 2021, 9: 315
doi: 10.1080/21663831.2021.1913768
26 Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy [J]. Mater. Des., 2017, 121: 254
doi: 10.1016/j.matdes.2017.02.072
27 He Y X, Yang H X, Zhao C D, et al. Enhancing mechanical properties of Al0.25CoCrFeNi high-entropy alloy via cold rolling and subsequent annealing [J]. J. Alloys Compd., 2020, 830: 154645
doi: 10.1016/j.jallcom.2020.154645
28 He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
doi: 10.1016/j.actamat.2019.01.048
29 Chen D, He F, Han B, et al. Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys [J]. Intermetallics, 2019, 110: 106476
doi: 10.1016/j.intermet.2019.106476
30 Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
doi: 10.1016/j.actamat.2016.06.063
31 Naeem M, He H Y, Harjo S, et al. Extremely high dislocation density and deformation pathway of CrMnFeCoNi high entropy alloy at ultralow temperature [J]. Scr. Mater., 2020, 188: 21
doi: 10.1016/j.scriptamat.2020.07.004
32 Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
33 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
34 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
35 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
36 Wei D X, Li X Q, Schönecker S, et al. Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys [J]. Acta Mater., 2019, 181: 318
doi: 10.1016/j.actamat.2019.09.050
37 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1 pmid: 31819051
38 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
39 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
40 Wang J, Jiang P, Yuan F P, et al. Chemical medium-range order in a medium-entropy alloy [J]. Nat. Commun., 2022, 13: 1021
doi: 10.1038/s41467-022-28687-w pmid: 35197473
41 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
42 An Z B, Mao S C, Liu Y N, et al. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 92: 195
doi: 10.1016/j.jmst.2021.02.059
43 Zheng X Y, Xie W B, Zeng L F, et al. Achieving high strength and ductility in a heterogeneous-grain-structured CrCoNi alloy processed by cryorolling and subsequent short-annealing [J]. Mater. Sci. Eng., 2021, A821: 141610
44 Zhang C, MacDonald B E, Guo F W, et al. Cold-workable refractory complex concentrated alloys with tunable microstructure and good room-temperature tensile behavior [J]. Scr. Mater., 2020, 188: 16
doi: 10.1016/j.scriptamat.2020.07.006
45 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
46 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
47 Jang T J, Choi W S, Kim D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys [J]. Nat. Commun., 2021, 12: 4703
doi: 10.1038/s41467-021-25031-6 pmid: 34349105
48 Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z pmid: 32404913
49 An Z B, Mao S C, Liu Y N, et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79: 109
doi: 10.1016/j.jmst.2020.10.073
50 Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.202004029
51 Feng R, Feng B J, Gao M C, et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy [J]. Adv. Mater., 2021, 33: 2102401
doi: 10.1002/adma.202102401
52 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
doi: 10.1016/j.jmst.2020.06.018
53 Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
54 Yin S, Ding J, Asta M, et al. Ab initio modeling of the role of local chemical short-range order on the Peierls potential of screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 1
doi: 10.1038/s41524-019-0267-z
55 Hu Q, Guo S, Guo J L, et al. Effect of Mo on high-temperature strength of refractory complex concentrated alloys: A perspective of electronegativity difference [J]. J. Alloys Compd., 2022, 906: 164186
doi: 10.1016/j.jallcom.2022.164186
56 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
57 Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms [J]. Acta Mater., 2018, 142: 131
doi: 10.1016/j.actamat.2017.09.062
58 Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
doi: 10.1016/j.actamat.2020.02.041
59 Fernández-Caballero A, Wróbel J S, Mummery P M, et al. Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system [J]. J. Phase Equilib. Diffus., 2017, 38: 391
doi: 10.1007/s11669-017-0582-3
60 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
61 Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
doi: 10.1016/j.actamat.2020.04.034
62 Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
doi: 10.1016/j.actamat.2020.08.044
63 Kostiuchenko T, Ruban A V, Neugebauer J, et al. Short-range order in face-centered cubic VCoNi alloys [J]. Phys. Rev. Mater., 2020, 4: 113802
64 He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
doi: 10.1016/j.ijplas.2021.102965
65 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
66 Su I A, Tseng K K, Yeh J W, et al. Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35 [J]. Scr. Mater., 2022, 206: 114225
doi: 10.1016/j.scriptamat.2021.114225
67 Gerold V, Karnthaler H P. On the origin of planar slip in f.c.c. alloys [J]. Acta Metall., 1989, 37: 2177
doi: 10.1016/0001-6160(89)90143-0
68 Hamdi F, Asgari S. Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys [J]. Scr. Mater., 2010, 62: 693
doi: 10.1016/j.scriptamat.2010.01.031
69 Cao B X, Zhao Y L, Yang T, et al. L12 -strengthened Co-rich alloys for high-temperature structural applications: A critical review [J]. Adv. Eng. Mater., 2021, 23: 2100453
doi: 10.1002/adem.202100453
70 Yang T, Cao B X, Zhang T L, et al. Chemically complex intermetallic alloys: A new frontier for innovative structural materials [J]. Mater. Today, 2022, 52: 161
doi: 10.1016/j.mattod.2021.12.004
71 Orowan E. Fracture and strength of solids [J]. Rep. Prog. Phys., 1949, 12: 185
doi: 10.1088/0034-4885/12/1/309
72 Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys [J]. Nat. Commun., 2018, 9: 4063
doi: 10.1038/s41467-018-06600-8
73 An Z B, Mao S C, Yang T, et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy [J]. Mater. Horiz., 2021, 8: 948
doi: 10.1039/d0mh01341b pmid: 34821325
74 Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nat. Commun., 2020, 11: 6240
doi: 10.1038/s41467-020-20109-z pmid: 33288762
75 Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
doi: 10.1038/s41586-020-2036-z
76 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
77 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
78 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
79 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
80 Otto F, Hanold N L, George E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J]. Intermetallics, 2014, 54: 39
doi: 10.1016/j.intermet.2014.05.014
81 Wu S W, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure [J]. Acta Mater., 2019, 165: 444
doi: 10.1016/j.actamat.2018.12.012
82 Wang X, Li Y S, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. J. Mater. Sci. Technol., 2017, 33: 758
doi: 10.1016/j.jmst.2016.11.006
83 Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
doi: 10.1016/S1359-6454(02)00310-5
84 Hasan M N, Liu Y F, An X H, et al. Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures [J]. Int. J. Plast., 2019, 123: 178
doi: 10.1016/j.ijplas.2019.07.017
85 Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
86 Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures [J]. Scr. Mater., 2021, 204: 114132
doi: 10.1016/j.scriptamat.2021.114132
87 Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure [J]. Scr. Mater., 2020, 186: 336
doi: 10.1016/j.scriptamat.2020.04.035
88 Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
89 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
90 Fu Z Q, Jiang L, Wardini J L, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength [J]. Sci. Adv., 2018, 4: eaat8712
doi: 10.1126/sciadv.aat8712
91 Jia Z Y, Zhang S Z, Huo J T, et al. Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi medium entropy alloy with excellent mechanical properties [J]. Mater. Sci. Eng., 2022, A834: 142617
92 Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.