Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 860-870    DOI: 10.11900/0412.1961.2020.00306
  研究论文 本期目录 | 过刊浏览 |
Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析
曹富荣1,2,3(), 丁鑫1,4, 项超1, 尚会会1
1.东北大学 材料科学与工程学院 沈阳 110819
2.东北大学 轻质结构材料辽宁省重点实验室 沈阳 110819
3.东北大学 轧制与连轧自动化国家重点实验室 沈阳 110819
4.四川航天长征装备制造有限公司 成都 610000
Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy
CAO Furong1,2,3(), DING Xin1,4, XIANG Chao1, SHANG Huihui1
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Key Laboratory of Lightweight Structural Materials Liaoning Province, Northeastern University, Shenyang 110819, China
3.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
4.Sichuan Aerospace Changzheng Equipment Manufacturing Co. , Ltd. , Chengdu 610000, China
引用本文:

曹富荣, 丁鑫, 项超, 尚会会. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 2021, 57(7): 860-870.
Furong CAO, Xin DING, Chao XIANG, Huihui SHANG. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. Acta Metall Sin, 2021, 57(7): 860-870.

全文: PDF(11350 KB)   HTML
摘要: 

采用多向锻造与轧制(MDFR)制备了Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金,利用拉伸机、OM和XRD等研究了热拉伸流动应力、组织演变、本构模型与变形机理。结果表明,合金多向锻造晶粒细化机理为机械式剪切破碎与动态再结晶细化。合金在523~573 K时,热变形组织主要发生动态回复与动态再结晶;≥ 573 K时,热变形组织主要发生晶粒长大;在623 K发生由晶粒长大引起的应变硬化。合金退火组织由α(Mg)、β(Li)、Al2Y、Al12Mg17、LiAl和Mg2Y相组成。本构分析表明,合金应力指数为4.4,变形激活能为120.40 kJ/mol;623 K、1.67 × 10-4 s-1条件下,对应240%延伸率的位错密度和数量与原子扩散计算表明,合金在该条件下的变形机理为晶格扩散控制的位错蠕变。晶粒长大模型确定该条件下的晶粒长大指数q = 2,比例因子α' = 0.2。

关键词 Mg-Li合金热拉伸显微组织力学性能本构分析变形机理    
Abstract

Mg-Li alloys have potential applications in the aerospace, military, electronics, and automobile fields due to their superlight density, extremely high specific stiffness, high specific strength, damping, and electromagnetic shielding properties. Due to the limited slip systems of Mg and hcp-structured α(Mg) at room temperature, magnesium and α(Mg)-based alloys are difficult to deform; thus, it is significant to investigate the high-temperature deformation behavior to address this issue. Thus, in this study, an ultralight α(Mg)-based Mg-4.4Li-2.5Zn-0.46Al-0.74Y alloy was fabricated via multi-directional forging and rolling, and its flow stress, microstructural evolution, constitutive modeling, and deformation mechanism at elevated temperatures were investigated by tensile tests, OM, and XRD. The results indicate that the grain refinement mechanism of this alloy processed by multi-directional forging (MDF) exhibits mechanical shearing fragmentation and dynamic recrystallization (DRX). Additionally, the flow stress results demonstrate that strain-hardening occurred at 623 K due to grain coarsening, and microstructural evolution reveals that dynamic recovery and DRX occurred at tensile temperatures of 523-573 K; however, grain coarsening primarily appeared at 573 K (or more). XRD analysis demonstrates that this alloy comprised α(Mg), β(Li), Al2Y, Al12Mg17, LiAl, and Mg2Y phases, and hyperbolic sine constitutive analysis reveals that the stress exponent was 4.4 and the activation energy for deformation was 120.40 kJ/mol. The calculated results for dislocation density, number of dislocations in a grain, and atomic diffusion at 623 K and 1.67 × 10-4 s-1 corresponding to elongation-to-failure of 240% indicate that dislocation creep controlled by lattice diffusion governed the deformation mechanism under this condition. Predictions by grain growth models indicate that the calculated grain sizes were in good agreement with the practical grain sizes at 623 K and 1.67 × 10-4 s-1 when the grain growth factor was equal to 2 and proportional factor was 0.2.

Key wordsMg-Li alloy    hot tension    microstructure    mechanical property    constitutive analysis    deformation mechanism
收稿日期: 2020-08-14     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51334006)
作者简介: 曹富荣,男,1964年生,研究员,博士
图1  相同应变速率不同温度下Mg-4.4Li-2.5Zn-0.46Al-0.74Y (LZAY4301)合金的真应力-真应变曲线
图2  LZAY4301合金高温变形前的显微组织
图3  LZAY4301合金退火态的XRD谱
图4  523~623 K不同应变速率下LZAY4301合金标距部位的OM像

Temperature

K

Strain rate

s-1

Grain size

μm

Elongation

%

5231.67 × 10-217.78144.6
1.67 × 10-317.92147.9
5.00 × 10-416.39202.2
1.67 × 10-417.19189.3
5731.67 × 10-217.59153.4
1.67 × 10-321.23160.8
5.00 × 10-427.64197.9
1.67 × 10-429.33213.5
6231.67 × 10-223.07178.3
1.67 × 10-329.74193.8
5.00 × 10-432.97235.0
1.67 × 10-434.48240.0
表1  523~623 K不同应变速率下LZAY4301合金的晶粒尺寸与延伸率
图5  高温拉伸条件下LZAY4301合金的lnε˙-lnσ、lnε˙-σ、lnε˙-ln[sinh(ασ)]和ln[sinh(ασ)]-1 / T关系曲线
图6  lnZ-ln[sinh(ασ)]关系曲线以及计算应力与测量应力的比较
1 Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes [J]. Mater. Charact., 2020, 160: 110135
2 Perugu C S, Kumar S, Suwas S. Evolution of microstructure, texture, and tensile properties in two-phase Mg-Li alloys: Effect of Zn addition [J]. JOM, 2020, 72: 1627
3 Ji H, Wu G H, Liu W C, et al. Microstructure characterization and mechanical properties of the as-cast and as-extruded Mg-xLi-5Zn-0.5Er (x = 8, 10 and 12 wt%) alloys [J]. Mater. Charact., 2020, 159: 110008
4 Guo F, Liu L, Ma Y L, et al. Slip behavior and its effect on rolling texture development in a dual-phase Mg-Li alloy [J]. J. Alloys Compd., 2020, 813: 152117
5 Shah S S A, Wu D, Chen R S, et al. Temperature effects on the microstructures of Mg-Gd-Y alloy processed by multi-direction impact forging [J]. Acta Metall. Sin. (Eng. Lett.), 2020, 33: 243
6 Dong B B, Zhang Z M, Yu J M, et al. Microstructure, texture evolution and mechanical properties of multi-directional forged Mg-13Gd-4Y-2Zn-0.5Zr alloy under decreasing temperature [J]. J. Alloys Compd., 2020, 823: 153776
7 Wei J S, Jiang S N, Chen Z Y, et al. Increasing strength and ductility of a Mg-9Al alloy by dynamic precipitation assisted grain refinement during multi-directional forging [J]. Mater. Sci. Eng., 2020, A780: 139192
8 Kobayashi M, Yoden Y, Aoba T, et al. Microstructure and mechanical properties of multi-directionally-forged AZ80-F magnesium alloys at warm temperatures [J]. J. Jpn. Inst. Met. Mater., 2020, 84: 190
9 Mehrabi A, Mahmudi R, Miura H. Superplasticity in a multi-directionally forged Mg-Li-Zn alloy [J]. Mater. Sci. Eng., 2019, A765: 138274
10 Zhang T L, Tokunaga T, Ohno M, et al. Low temperature superplasticity of a dual-phase Mg-Li-Zn alloy processed by a multi-mode deformation process [J]. Mater. Sci. Eng., 2018, A737: 61
11 Zhou M R, Morisada Y, Fujii H, et al. Pronounced low-temperature superplasticity of friction stir processed Mg-9Li-1Zn alloy [J]. Mater. Sci. Eng., 2020, A780: 139071
12 Cao F R, Zhang J, Ding X, et al. Mechanical properties and microstructural evolution in a superlight Mg-6.4Li-3.6Zn-0.37Al-0.36Y alloy processed by multidirectional forging and rolling [J]. Mater. Sci. Eng., 2019, A760: 377
13 Cao F R, Xue G Q, Xu G M. Superplasticity of a dual-phase-dominated Mg-Li-Al-Zn-Sr alloy processed by multidirectional forging and rolling [J]. Mater. Sci. Eng., 2017, A704: 360
14 Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Mater. Des., 2011, 32: 1733
15 Armstrong R W, Li Q Z. Dislocation mechanics of high-rate deformations [J]. Metall. Mater. Trans., 2015, 46A: 4438
16 Barezban M H, Mirzadeh H, Roumina R, et al. Constitutive analysis of wrought Mg-Gd magnesium alloys during hot compression at elevated temperatures [J]. J. Alloys Compd., 2019, 791: 1200
17 Ciccarelli D, El Mehtedi M, Jäger A, et al. Analysis of flow stress and deformation mechanism under hot working of ZK60 magnesium alloy by a new strain-dependent constitutive equation [J]. J. Phys. Chem. Solids, 2015, 87: 183
18 Arun M S, Chakkingal U. A constitutive model to describe high temperature flow behavior of AZ31B magnesium alloy processed by equal-channel angular pressing [J]. Mater. Sci. Eng., 2019, A754: 659
19 Zhang F, Liu Z, Yang M M, et al. Microscopic mechanism exploration and constitutive equation construction for compression characteristics of AZ31-TD magnesium alloy at high strain rate [J]. Mater. Sci. Eng., 2020, A771: 138571
20 Spigarelli S, Jäger A, El Mehtedi M, et al. Microstructural and constitutive analysis in process modeling of hot working: The case of a Mg-Zn-Mn alloy [J]. Mater. Sci. Eng., 2016, A661: 40
21 Xiao B, Xu L Y, Zhao L, et al. Tensile mechanical properties, constitutive equations, and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures [J]. Mater. Sci. Eng., 2017, A690: 104
22 Shalbafi M, Roumina R, Mahmudi R. Hot deformation of the extruded Mg-10Li-1Zn alloy: Constitutive analysis and processing maps [J]. J. Alloys Compd., 2017, 696: 1269
23 Liu G, Xie W, Hadadzadeh A, et al. Hot deformation behavior and processing map of a superlight dual-phase Mg-Li alloy [J]. J. Alloys Compd., 2018, 766: 460
24 Xu T C, Peng X D, Qin J, et al. Dynamic recrystallization behavior of Mg-Li-Al-Nd duplex alloy during hot compression [J]. J. Alloys Compd., 2015, 639: 79
25 Li Y, Guan Y J, Zhai J Q, et al. Hot deformation behavior of LA43M Mg-Li alloy via hot compression tests [J]. J. Mater. Eng. Perform., 2019, 28: 7768
26 Langdon T G. Seventy-five years of superplasticity: Historic developments and new opportunities [J]. J. Mater. Sci., 2009, 44: 5998
27 Kawasaki M, Figueiredo R B, Langdon T G. The requirements for superplasticity with an emphasis on magnesium alloys [J]. Adv. Eng. Mater., 2016, 18: 127
28 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
29 Mirzadeh H. Developing constitutive equations of flow stress for hot deformation of AZ31 magnesium alloy under compression, torsion, and tension [J]. Int. J. Mater. Form., 2019, 12: 643
30 Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J Appl. Phys., 1944, 15: 22
31 Frost H J, Ashby M F. Deformation-Mechanism Maps [M]. Oxford: Pergamon Press, 1982: 21
32 Cao F R, Xia F, Xue G Q. Hot tensile deformation behavior and microstructural evolution of a Mg-9.3Li-1.79Al-1.61Zn alloy [J]. Mater. Des., 2016, 92: 44
33 Kawasaki M, Kubota K, Higashi K, et al. Flow and cavitation in a quasi-superplastic two-phase magnesium-lithium alloy [J]. Mater. Sci. Eng., 2006, A429: 334
34 Langdon T G, Mohamed F A. A new type of deformation mechanism map for high-temperature creep [J]. Mater. Sci. Eng., 1978, 32: 103
35 Cao F R, Zhou B J, Yin B, et al. Modeling of deformation energy at elevated temperatures and its application in Mg-Li-Al-Y alloy [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2434
36 Shah S S A, Wu D, Wang W H, et al. Microstructural evolution and mechanical properties of a Mg-Gd-Y alloy processed by impact forging [J]. Mater. Sci. Eng., 2017, A702: 153
37 Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging [J]. Acta Metall. Sin., 2020, 56: 723
37 张 阳, 邵建波, 陈 韬等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶 [J]. 金属学报, 2020, 56: 723
38 Kim W J, Kwak T Y. Constitutive modeling and understanding of the hot compressive deformation of Mg-9.5Zn-2.0Y magnesium alloy with reduced number of strain-dependent constitutive parameters [J]. Met. Mater. Int., 2017, 23: 660
39 Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams [M]. 2nd Ed., Materials Park, OH: ASM International, 1990: 1
40 Somekawa H, Hirai K, Watanabe H, et al. Dislocation creep behavior in Mg-Al-Zn alloys [J]. Mater. Sci. Eng., 2005, A407: 53
41 Cao F R, Ding H, Li Y L, et al. Superplasticity, dynamic grain growth and deformation mechanism in ultra-light two-phase magnesium-lithium alloys [J]. Mater. Sci. Eng., 2010, A527: 2335
42 Ruano O A, Wadsworth J, Sherby O D. Deformation mechanisms in an austenitic stainless steel (25Cr-20Ni) at elevated temperature [J]. J. Mater. Sci., 1985, 20: 3735
43 Taleff E M, Ruano O A, Wolfenstine J, et al. Superplastic behavior of a fine-grained Mg-9Li material at low homologous temperature [J]. J. Mater. Res., 1992, 7: 2131
44 Nayeb-Hashemi A A, Clark J B, Pelton A D. The Li-Mg (lithium-magnesium) system [J]. Bull. Alloy Phase Diagr., 1984, 5: 365
45 Sherwood D J, Hamilton C H. A mechanism for deformation-enhanced grain growth in single phase materials [J]. Scr. Metall. Mater., 1991, 25: 2873
46 Cao F R, Lei F, Cui J Z, et al. Modification of a deformation induced grain growth model of superplasticity and its experimental verification [J]. Acta Metall. Sin., 1999, 35: 770
46 曹富荣, 雷 方, 崔建忠等. 超塑变形晶粒长大模型的修正与实验验证 [J]. 金属学报, 1999, 35: 770
47 Chokshi A H. Cavity nucleation and growth in superplasticity [J]. Mater. Sci. Eng., 2005, A410-411: 95
48 Sato E, Kuribayashi K. Superplasticity and deformation induced grain growth [J]. ISIJ Int., 1993, 33: 825
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.