|
|
析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制 |
孙士杰1, 田艳中2, 张哲峰1( ) |
1. 中国科学院金属研究所 沈阳 110016 2. 东北大学 材料科学与工程学院 沈阳 110819 |
|
Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy |
SUN Shijie1, TIAN Yanzhong2, ZHANG Zhefeng1( ) |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
Shijie SUN,
Yanzhong TIAN,
Zhefeng ZHANG.
Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. Acta Metall Sin, 2022, 58(1): 54-66.
1 |
Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Zhang Y , Zuo T T , Tang Z , et al . Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
3 |
Sun S J , Tian Y Z , An X H , et al . Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J]. Mater. Today Nano, 2018, 4: 46
|
4 |
Schuh B , Mendez-Martin F , Völker B , et al . Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
|
5 |
Sun S J , Tian Y Z , Lin H R , et al . Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
|
6 |
He F , Chen D , Han B , et al . Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
|
7 |
Qin G , Chen R R , Liaw P K , et al . A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates [J]. Scr. Mater., 2019, 172: 51
|
8 |
Wang Z W , Baker I , Cai Z H , et al . The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
|
9 |
Sun S J , Tian Y Z , Lin H R , et al . Revisiting the role of prestrain history in the mechanical properties of ultrafine-grained CoCrFe-MnNi high-entropy alloy [J]. Mater. Sci. Eng., 2021, A801: 140398
|
10 |
Wu Z G , Guo W , Jin K , et al . Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy [J]. J. Mater. Res., 2018, 33: 3301
|
11 |
Li Z M . Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
|
12 |
He J Y , Wang H , Huang H L , et al . A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
13 |
Tong Y , Chen D , Han B , et al . Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures [J]. Acta Mater., 2019, 165: 228
|
14 |
Yang T , Zhao Y L , Tong Y , et al . Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
|
15 |
Choudhuri D , Alam T , Borkar T , et al . Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy [J]. Scr. Mater., 2015, 100: 36
|
16 |
Shi P J , Li Y , Wen Y B , et al . A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening [J]. J. Mater. Sci. Technol., 2021, 89: 88
|
17 |
Ritchie R O . The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
|
18 |
Zhu Y T , Wu X L . Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
|
19 |
Huang C X , Wang Y F , Ma X L , et al . Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
|
20 |
Wang H W , He Z F , Jia N . Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
|
20 |
王洪伟, 何竹风, 贾 楠 . 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
|
21 |
Sun S J , Tian Y Z , Lin H R , et al . Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K [J]. Mater. Sci. Eng, 2019, A740-741: 336
|
22 |
Sun S J , Tian Y Z , Lin H R , et al . Modulating the prestrain history to optimize strength and ductility in CoCrFeMnNi high-entropy alloy [J]. Scr. Mater., 2019, 163: 111
|
23 |
Fu Z Q , Macdonald B E , Li Z M , et al . Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility [J]. Mater. Res. Lett., 2018, 6: 634
|
24 |
Slone C E , Miao J , George E P , et al . Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures [J]. Acta Mater., 2019, 165: 496
|
25 |
Chang R B , Fang W , Yu H Y , et al . Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength-ductility synergy utilizing compositional inhomogeneity [J]. Scr. Mater., 2019, 172: 144
|
26 |
Donadille C , Valle R , Dervin P , et al . Development of texture and microstructure during cold-rolling and annealing of F.C.C. alloys: Example of an austenitic stainless steel [J]. Acta Metall., 1989, 37: 1547
|
27 |
Di Schino A , Kenny J M , Abbruzzese G . Analysis of the recrystallization and grain growth processes in AISI 316 stainless steel [J]. J. Mater. Sci., 2002, 37: 5291
|
28 |
Zhao Y L , Yang T , Tong Y , et al . Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
|
29 |
Joshi C , Abinandanan T A , Choudhury A . Phase field modelling of rayleigh instabilities in the solid-state [J]. Acta Mater., 2016, 109: 286
|
30 |
Otto F , Dlouhý A , Somsen C , et al . The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
|
31 |
Sun S J , Tian Y Z , Lin H R , et al . Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy [J]. J. Alloys Compd., 2019, 806: 992
|
32 |
Gludovatz B , Hohenwarter A , Catoor D , et al . A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
|
33 |
Wu Z G , Parish C M , Bei H B . Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys [J]. J. Alloys Compd., 2015, 647: 815
|
34 |
Laplanche G , Kostka A , Reinhart C , et al . Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
|
35 |
Miao J S , Slone C E , Smith T M , et al . The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy [J]. Acta Mater., 2017, 132: 35
|
36 |
Wu Z G , Bei H B , Pharr G M , et al . Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
|
37 |
Li D Y , Li C X , Feng T , et al . High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures [J]. Acta Mater., 2017, 123: 285
|
38 |
Li D Y , Zhang Y . The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
|
39 |
Jo Y H , Jung S , Choi W M , et al . Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
|
40 |
Wu Z G , Bei H B . Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy [J]. Mater. Sci. Eng., 2015, A640: 217
|
41 |
Chen L B , Wei R , Tang K , et al . Ductile-brittle transition of carbon alloyed Fe40Mn40Co10Cr10 high entropy alloys [J]. Mater. Lett., 2019, 236: 416
|
42 |
Bhattacharjee T , Zheng R X , Chong Y , et al . Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 207
|
43 |
Liu W H , Lu Z P , He J Y , et al . Ductile CoCrFeNiMo x high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
|
44 |
Ming K S , Bi X F , Wang J . Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates [J]. Int. J. Plast., 2018, 100: 177
|
45 |
Odnobokova M , Belyakov A , Kaibyshev R . Effect of severe cold or warm deformation on microstructure evolution and tensile behavior of a 316L stainless steel [J]. Adv. Eng. Mater., 2015, 17: 1812
|
46 |
Li J S , Cao Y , Gao B , et al . Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure [J]. J. Mater. Sci., 2018, 53: 10442
|
47 |
Cheng Q , Xu X D , Xie P , et al . Unveiling anneal hardening in dilute Al-doped Al x CoCrFeMnNi (x = 0, 0.1) high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 91: 270
|
48 |
Gu J , Song M . Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy [J]. Scr. Mater., 2019, 162: 345
|
49 |
Pickering E J , Muñoz-Moreno R , Stone H J , et al . Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi [J]. Scr. Mater., 2016, 113: 106
|
50 |
Nembach E V . Particle Strengthening of Metals and Alloys [M]. New York: John Wiley, 1997: 1
|
51 |
Vo N Q , Liebscher C H , Rawlings M J S , et al . Creep properties and microstructure of a precipitation-strengthened ferritic Fe-Al-Ni-Cr alloy [J]. Acta Mater., 2014, 71: 89
|
52 |
Shao C W , Zhang P , Zhu Y K , et al . Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
|
53 |
Gil Sevillano J , de las Cuevas F . Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels [J]. Scr. Mater., 2012, 66: 978
|
54 |
Gutierrez-Urrutia I , Raabe D . Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.%Mn-0.6 wt.%C TWIP steel observed by electron channeling contrast imaging [J]. Acta Mater., 2011, 59: 6449
|
55 |
Gutierrez-Urrutia I , Raabe D . Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater., 2012, 60: 5791
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|