Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 54-66    DOI: 10.11900/0412.1961.2021.00242
  研究论文 本期目录 | 过刊浏览 |
析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制
孙士杰1, 田艳中2, 张哲峰1()
1. 中国科学院金属研究所 沈阳 110016
2. 东北大学 材料科学与工程学院 沈阳 110819
Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy
SUN Shijie1, TIAN Yanzhong2, ZHANG Zhefeng1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
Shijie SUN, Yanzhong TIAN, Zhefeng ZHANG. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. Acta Metall Sin, 2022, 58(1): 54-66.

全文: PDF(4512 KB)   HTML
摘要: 

以fcc结构高熵合金为基础合金,通过添加Al、Ti和C元素,设计了新型析出强化Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金。经过轧制后该合金含有纳米结构轧制条带(含有变形孪晶)和高密度位错结构。中温长时间热处理后该合金具有纳米结构非均匀组织,包括轧制条带、位错和大量的纳米析出相,表现出优异的强度-塑性匹配关系。该合金优异的力学性能是由于组织中与基体共格的L12型析出相起到了显著的析出强化作用,使该合金强度明显提高;另一方面,高密度位错得到有效回复,改善了合金的应变硬化能力。采用中温长时间热处理可获得强度-塑性匹配优异的非均匀组织析出强化高熵合金。

关键词 高熵合金析出强化非均匀组织强度塑性    
Abstract

There has been significant progress in the development of high-entropy alloys (HEAs) with unconventional compositions in the past decade to meet the demand from a wide variety of industries, such as automotive, shipbuilding, and aerospace. The fcc HEAs have attracted growing attention due to their superior mechanical and functional properties. However, these HEAs exhibit low or modest yield strength, limiting their potential industrial application. To enhance the strength of the fcc HEAs, materials researchers are exploring additional strengthening methods, such as grain refinement, solid solution strengthening, and precipitation strengthening. However, the strengthening approaches mentioned above suffer from the trade-off dilemma between strength and ductility. In this study, a new precipitation-hardened Fe53Mn15Ni15Cr10Al4Ti2C1 HEA was designed by adding Al, Ti, and C elements based on the fcc HEA. Then the HEA was treated utilizing heavy-deformation and various heat-treatment processes, tuning the microstructure and precipitate. The cold-rolled alloy microstructure presented rolling bands (including deformation twins) and a significant dislocation density. Furthermore, the HEA microstructure consists of rolling bands, high-density dislocations, and nanoscale precipitates following heat treatment at medium temperatures for an extended period. In particular, the HEA possessed a superior balance between strength and ductility, resulting from the significant precipitation strengthening effect of L12 precipitates that were coherent with the matrix in the microstructure as well as the improved strain-hardening ability due to the recovery of dislocations. The precipitation-hardened HEA with an inhomogeneous microstructure could be obtained through heat treatment at medium temperatures over long periods, which exhibited an excellent strength-ductility relationship.

Key wordshigh-entropy alloy    precipitation strengthening    inhomogeneous microstructure    strength    ductility
收稿日期: 2021-06-10     
ZTFLH:  TG113.2  
基金资助:中央高校基本科研业务费项目(N180204015);辽宁省兴辽英才计划项目(XLYC1808027);中国科学院特别研究助理项目,及中国科学院金属研究所创新基金项目(2021-PY16)
作者简介: 孙士杰,男,1991年生,博士
图1  铸态Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金的XRD谱和SEM像
图2  经不同热处理工艺后冷轧Fe53Mn15Ni15Cr10Al4Ti2-C1高熵合金板材的显微硬度
图3  冷轧和不同热处理状态Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金的XRD谱
图4  不同热处理状态Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金的EBSD像
图5  经873 K、50 h热处理的Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金的BSE像和元素的SEM-EDS分布图
图6  冷轧和不同热处理状态Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金的TEM像
图7  冷轧和不同热处理状态Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金的STEM高角环形暗场(HAADF)像和元素的STEM-EDS分布图 (a) CR state (b) 873 K, 1 h (c) 873 K, 50 h (d) 1023 K, 1 h
图8  经873 K、50 h热处理的Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金的TEM分析
图9  铸态、冷轧和不同热处理状态Fe53Mn15Ni15Cr10Al4-Ti2C1高熵合金的拉伸工程应力-应变曲线、应变硬化速率曲线、本工作以及其他高熵合金或中熵合金[6,7,12,13,21,30-44]的屈服强度和均匀延伸率
图10  经873 K、50 h热处理的Fe53Mn15Ni15Cr10Al4Ti2C1高熵合金断裂后组织的TEM像 (a) dislocation cell (b) interaction of the precipitates and dislocations
1 Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Zhang Y , Zuo T T , Tang Z , et al . Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
3 Sun S J , Tian Y Z , An X H , et al . Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J]. Mater. Today Nano, 2018, 4: 46
4 Schuh B , Mendez-Martin F , Völker B , et al . Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
5 Sun S J , Tian Y Z , Lin H R , et al . Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
6 He F , Chen D , Han B , et al . Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
7 Qin G , Chen R R , Liaw P K , et al . A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates [J]. Scr. Mater., 2019, 172: 51
8 Wang Z W , Baker I , Cai Z H , et al . The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
9 Sun S J , Tian Y Z , Lin H R , et al . Revisiting the role of prestrain history in the mechanical properties of ultrafine-grained CoCrFe-MnNi high-entropy alloy [J]. Mater. Sci. Eng., 2021, A801: 140398
10 Wu Z G , Guo W , Jin K , et al . Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy [J]. J. Mater. Res., 2018, 33: 3301
11 Li Z M . Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
12 He J Y , Wang H , Huang H L , et al . A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
13 Tong Y , Chen D , Han B , et al . Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures [J]. Acta Mater., 2019, 165: 228
14 Yang T , Zhao Y L , Tong Y , et al . Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
15 Choudhuri D , Alam T , Borkar T , et al . Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy [J]. Scr. Mater., 2015, 100: 36
16 Shi P J , Li Y , Wen Y B , et al . A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening [J]. J. Mater. Sci. Technol., 2021, 89: 88
17 Ritchie R O . The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
18 Zhu Y T , Wu X L . Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
19 Huang C X , Wang Y F , Ma X L , et al . Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
20 Wang H W , He Z F , Jia N . Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
20 王洪伟, 何竹风, 贾 楠 . 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
21 Sun S J , Tian Y Z , Lin H R , et al . Achieving high ductility in the 1.7  GPa grade CoCrFeMnNi high-entropy alloy at 77  K [J]. Mater. Sci. Eng, 2019, A740-741: 336
22 Sun S J , Tian Y Z , Lin H R , et al . Modulating the prestrain history to optimize strength and ductility in CoCrFeMnNi high-entropy alloy [J]. Scr. Mater., 2019, 163: 111
23 Fu Z Q , Macdonald B E , Li Z M , et al . Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility [J]. Mater. Res. Lett., 2018, 6: 634
24 Slone C E , Miao J , George E P , et al . Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures [J]. Acta Mater., 2019, 165: 496
25 Chang R B , Fang W , Yu H Y , et al . Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength-ductility synergy utilizing compositional inhomogeneity [J]. Scr. Mater., 2019, 172: 144
26 Donadille C , Valle R , Dervin P , et al . Development of texture and microstructure during cold-rolling and annealing of F.C.C. alloys: Example of an austenitic stainless steel [J]. Acta Metall., 1989, 37: 1547
27 Di Schino A , Kenny J M , Abbruzzese G . Analysis of the recrystallization and grain growth processes in AISI 316 stainless steel [J]. J. Mater. Sci., 2002, 37: 5291
28 Zhao Y L , Yang T , Tong Y , et al . Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
29 Joshi C , Abinandanan T A , Choudhury A . Phase field modelling of rayleigh instabilities in the solid-state [J]. Acta Mater., 2016, 109: 286
30 Otto F , Dlouhý A , Somsen C , et al . The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
31 Sun S J , Tian Y Z , Lin H R , et al . Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy [J]. J. Alloys Compd., 2019, 806: 992
32 Gludovatz B , Hohenwarter A , Catoor D , et al . A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
33 Wu Z G , Parish C M , Bei H B . Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys [J]. J. Alloys Compd., 2015, 647: 815
34 Laplanche G , Kostka A , Reinhart C , et al . Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi [J]. Acta Mater., 2017, 128: 292
35 Miao J S , Slone C E , Smith T M , et al . The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy [J]. Acta Mater., 2017, 132: 35
36 Wu Z G , Bei H B , Pharr G M , et al . Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
37 Li D Y , Li C X , Feng T , et al . High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures [J]. Acta Mater., 2017, 123: 285
38 Li D Y , Zhang Y . The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures [J]. Intermetallics, 2016, 70: 24
39 Jo Y H , Jung S , Choi W M , et al . Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
40 Wu Z G , Bei H B . Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy [J]. Mater. Sci. Eng., 2015, A640: 217
41 Chen L B , Wei R , Tang K , et al . Ductile-brittle transition of carbon alloyed Fe40Mn40Co10Cr10 high entropy alloys [J]. Mater. Lett., 2019, 236: 416
42 Bhattacharjee T , Zheng R X , Chong Y , et al . Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 207
43 Liu W H , Lu Z P , He J Y , et al . Ductile CoCrFeNiMo x high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
44 Ming K S , Bi X F , Wang J . Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates [J]. Int. J. Plast., 2018, 100: 177
45 Odnobokova M , Belyakov A , Kaibyshev R . Effect of severe cold or warm deformation on microstructure evolution and tensile behavior of a 316L stainless steel [J]. Adv. Eng. Mater., 2015, 17: 1812
46 Li J S , Cao Y , Gao B , et al . Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure [J]. J. Mater. Sci., 2018, 53: 10442
47 Cheng Q , Xu X D , Xie P , et al . Unveiling anneal hardening in dilute Al-doped Al x CoCrFeMnNi (x = 0, 0.1) high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 91: 270
48 Gu J , Song M . Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy [J]. Scr. Mater., 2019, 162: 345
49 Pickering E J , Muñoz-Moreno R , Stone H J , et al . Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi [J]. Scr. Mater., 2016, 113: 106
50 Nembach E V . Particle Strengthening of Metals and Alloys [M]. New York: John Wiley, 1997: 1
51 Vo N Q , Liebscher C H , Rawlings M J S , et al . Creep properties and microstructure of a precipitation-strengthened ferritic Fe-Al-Ni-Cr alloy [J]. Acta Mater., 2014, 71: 89
52 Shao C W , Zhang P , Zhu Y K , et al . Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
53 Gil Sevillano J , de las Cuevas F . Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels [J]. Scr. Mater., 2012, 66: 978
54 Gutierrez-Urrutia I , Raabe D . Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.%Mn-0.6 wt.%C TWIP steel observed by electron channeling contrast imaging [J]. Acta Mater., 2011, 59: 6449
55 Gutierrez-Urrutia I , Raabe D . Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater., 2012, 60: 5791
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[6] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[7] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[8] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[9] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[10] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[12] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[13] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[14] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[15] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.