Please wait a minute...
金属学报  2020, Vol. 56 Issue (9): 1265-1274    DOI: 10.11900/0412.1961.2019.00438
  本期目录 | 过刊浏览 |
激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响
童文辉(), 张新元, 李为轩, 刘玉坤, 李岩, 国旭明
沈阳航空航天大学材料科学与工程学院 沈阳 110136
Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer
TONG Wenhui(), ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming
School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
Wenhui TONG, Xinyuan ZHANG, Weixuan LI, Yukun LIU, Yan LI, Xuming GUO. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. Acta Metall Sin, 2020, 56(9): 1265-1274.

全文: PDF(4001 KB)   HTML
摘要: 

采用6 kW CO2激光制备了含10%的TiC-钴基合金熔覆层,通过OM、SEM、EDS、XRD及显微硬度计,研究激光工艺参数对熔覆层显微组织、成分、物相及硬度变化的影响规律。结果表明,熔覆层主要由γ-Co、TiC/(Ti, W)C1-x、Cr-Ni-Fe-C和少量的 Cr7C3相组成,从基体表面到熔覆层表层,组织由细树枝晶→等轴枝晶→细树枝晶,TiC弥散分布于二次枝晶臂根部、顶端或一次枝晶臂上。随激光功率降低或扫描速率增加,熔覆层枝晶含量增加,枝晶间距呈现增大趋势,TiC含量显著增加,尺寸变小,分布更均匀,而TiC形貌从边缘平滑的近圆形向不规则多边形转变,TiC溶解再析出会抑制一次枝晶或二次枝晶生长。实验范围内,随激光功率降低或扫描速率增加,熔覆层表层硬度增加,最高硬度为1246.6 HV0.2,相对基体提升接近5倍。

关键词 激光熔覆TiC-钴基合金激光工艺参数显微组织硬度    
Abstract

The severe wear and uneven wear will happen on the surface of ductile cast iron such as the traction wheel of elevator, in the long-term working under the serious wear and impact conditions. Laser cladding can be applied to reinforce its surface, which can improve the properties and life of the cladded components, save materials and manufacturing cost and raise the economic efficiency, but as to the surface of different materials, especially the ductile cast iron, the alloy powder and process parameters for laser cladding need to be chosen carefully by the experimental studies because of the rapid melting and solidification, the difference of thermo-physical properties between the laser cladding layer and the matrix, the laser absorption of the cladding layer and matrix and so on. In this work, laser cladding is employed to fabricate Co-based composite coatings reinforced by TiC particles by a 6 kW CO2 laser. The effects of the technical parameters of laser on the composition, phase and microhardness of the laser cladding layer are investigated by OM, SEM, EDS, XRD and microhardness tester, with the emphases of analyzing the changes of the distribution, morphology and size of TiC in the laser cladding layer. It is shown by the results that the cladding layer is mainly composed of γ-Co, TiC/(Ti, W)C1-x, Cr-Ni-Fe-C and a small amount of Cr7C3 phase, and its microstructure changed from the fine dendrite crystal near the cast iron matrix to the equiaxed dendrite in the middle then to the fine dendrite crystal near the surface of laser cladding layer with the dispersed distribution of TiC at the root or tip of secondary dendrite arm, even at the branch of primary dendrite arm. The number of dendrite and the dendrite arm spacing both increase in the microstructure of the laser cladding layer and the morphology of TiC is transformed from the smooth circular shape to the irregular polygon shape, and its content obviously increases with the particle size of TiC decreasing and its distribution more uniform, when the laser power is decreased from 3.6 kW to 3.2 kW or the scanning rate increased from 350 mm/min to 410 mm/min. The growth of the primary dendrite or secondary dendrite can be inhibited by the precipitation of TiC after its dissolution in the melt pool of laser cladding. In this experiment, the hardness at the surface of laser cladding layer gradually increases with the decrease of laser power or the increase of scanning rate, in which the maximal microhardness is 1246.6 HV0.2, up to increasing by 5 times of the matrix.

Key wordslaser cladding    TiC-Co-based alloy    laser process parameter    microstructure    hardness
收稿日期: 2019-12-18     
ZTFLH:  TG456.7  
基金资助:辽宁省教育厅科学研究项目(L201705)
作者简介: 童文辉,男,满族,1971年生,副教授,博士
MaterialCCrSiWFeMoNiMnBCo
Nodular cast iron3.60-2.71-Bal.--0.42--
Co-based alloy powder0.221.01.64.53.00.44.00.32.4Bal.
表1  球墨铸铁基体和钴基合金粉末的化学成分 (mass fraction / %)
图1  TiC颗粒及TiC-Co基合金混合粉末的SEM像
SchemeP / kWV / (mm·min-1)
13.2390
23.3390
33.4390
43.4410
53.5390
63.6390
73.6410
83.2350
93.2370
103.2410
表2  激光熔覆工艺参数
图2  球墨铸铁表面熔覆TiC-Co基合金熔覆层显微组织(P=3.2 kW、V=410 mm/min)(a) the whole laser cladding layer;(b) heat affected zone and combining zone;(c) middle zone;(d) near surface
图3  激光扫描速率390 mm/min、不同激光功率下熔覆层组织(a) P=3.2 kW;(b) P=3.3 kW;(c) P=3.4 kW;(d) P=3.5 kW;(e) P=3.6 kW
图4  激光功率对熔覆层组织枝晶间距的影响
图5  激光功率P=3.2 kW、不同激光扫描速率下熔覆层显微组织
图6  激光扫描速率对熔覆层组织枝晶间距的影响
图7  TiC-Co基合金熔覆层的XRD谱
图8  激光扫描速率为410 mm/min、不同激光功率条件下制备得到的熔覆层横截面SEM像及EDS结果(a, b) P=3.6 kW;(c, d) P=3.4 kW;(e, f) P=3.2 kW
图9  TiC-Co基合金熔覆层凝固枝晶生长示意图
图10  熔覆层断面硬度随与球墨铸铁基体表面的距离的变化
图11  激光工艺参数对熔覆层硬度的影响(a) the effect of laser power at V= 390 mm/min;(b) the effect of laser scanning rate at P=3.2 kW
[1] Fang G R, Wang Y Z. The birth, application, tendency of technologh development—The one of the most important technology progresses of the material science of the 20th century [J]. Modern Cast Iron, 2000, (1): 3
[1] (房贵如, 王云昭. 现代球墨铸铁的诞生、应用及技术发展趋势—20世纪材料科学最重大的技术进展之一 [J]. 现代铸铁, 2000, (1): 3)
[2] Sharifitabar M, Khaki J V, Sabzevar M H. Microstructure and wear resistance of in-situ TiC-Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding [J]. Surf. Coat. Technol., 2016, 285: 47
[3] Xu J Y, Zou B L, Tao S Y, et al. Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders [J]. J. Alloys Compd., 2016, 672: 251
[4] Nurminen J, Nakki J, Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 472
[5] Taillon G, Pougoum F, Lavigne S, et al. Cavitation erosion mechanisms in stainless steels and in composite metal-ceramic HVOF coatings [J]. Wear, 2016, 364-365: 201
doi: 10.1016/j.wear.2016.07.015
[6] Su H J, Wei K C, Guo W, et al. New development of laser rapid forming and its application in high performance materials processing [J]. Chin. J. Nonferrous Met., 2013, 23: 1567
[6] (苏海军, 尉凯晨, 郭 伟等. 激光快速成形技术新进展及其在高性能材料加工中的应用 [J]. 中国有色金属学报, 2013, 23: 1567)
[7] Lee C, Park H K, Yoo J, et al. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr [J]. Appl. Surf. Sci., 2015, 345: 286
doi: 10.1016/j.apsusc.2015.03.168
[8] Ma Q S, Li Y J, Wang J, et al. Investigation on core-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding [J]. J. Alloys Compd., 2015, 645: 151
doi: 10.1016/j.jallcom.2015.04.136
[9] Leunda J, Sanz C, Soriano C. Laser cladding strategies for producing WC reinforced NiCr coatings inside twin barrels [J]. Surf. Coat. Technol., 2016, 307: 720
doi: 10.1016/j.surfcoat.2016.10.002
[10] Xu X, Mi G Y, Xiong L D, et al. Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire [J]. J. Alloys Compd., 2018, 740: 16
doi: 10.1016/j.jallcom.2017.12.298
[11] Diao Y H, Zhang K M. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders [J]. Appl. Surf. Sci., 2015, 352: 163
doi: 10.1016/j.apsusc.2015.04.030
[12] Arias-González F, Del Val J, Comesana R, et al. Fiber laser cladding of nickel-based alloy on cast iron [J]. Appl. Surf. Sci., 2016, 374: 197
doi: 10.1016/j.apsusc.2015.11.023
[13] Li Y J, Dong S Y, He P, et al. Microstructure characteristics and mechanical properties of new-type FeNiCr laser cladding alloy coating on nodular cast iron [J]. J. Mater. Process. Technol., 2019, 269: 163
doi: 10.1016/j.jmatprotec.2019.02.010
[14] Yang P C, Song Y L, Liu Y H, et al. Effect of scanning speed on microstructure of laser cladding layer on nodular cast iron [J]. Surf. Technol., 2018, 47(9): 187
[14] (杨鹏聪, 宋雨来, 刘耀辉等. 扫描速度对球墨铸铁激光熔覆层组织的影响 [J]. 表面技术, 2018, 47(9): 187)
[15] Xu N J, Lv J B, Sun T, et al. Process optimization and properties of laser cladding high vanadium high speed steel coatings on nodular cast iron [J]. Adv. Mater. Res., 2013, 712-715: 611
[16] Navas C, Conde A, Fernández B J, et al. Laser coatings to improve wear resistance of mould steel [J]. Surf. Coat. Technol., 2005, 194: 136
doi: 10.1016/j.surfcoat.2004.05.002
[17] Orthner H R, Tomasi R, Botta W J. Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling [J]. Mater. Sci. Eng., 2002, A336: 202
[18] Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67: 185
doi: 10.1016/j.scriptamat.2012.04.013
[19] Lagos M A, Agote I, Atxaga G, et al. Fabrication and characterisation of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering [J]. Mater. Sci. Eng., 2016, A655: 44
[20] Emamian A, Corbin S F, Khajepour A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings [J]. Surf. Coat. Technol., 2010, 205: 2007
doi: 10.1016/j.surfcoat.2010.08.087
[21] Tong W H, Zhao Z L, Zhang X Y, et al. Microstructure and properties of TiC/Co-based alloy by laser cladding on the surface of nodular graphite cast iron [J]. Acta Metall. Sin., 2017, 53: 472
doi: 10.11900/0412.1961.2016.00288
[21] (童文辉, 赵子龙, 张新元等. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究 [J]. 金属学报, 2017, 53: 472)
doi: 10.11900/0412.1961.2016.00288
[22] Zhang J, Qiu B, Zhao L Z. Latest developments of laser cladding technology [J]. Hot Work. Technol., 2011, 40(18): 116
[22] (张 坚, 邱 斌, 赵龙志. 激光熔覆技术研究进展 [J]. 热加工工艺, 2011, 40(18): 116)
[23] Candel J J, Jimenez J A, Franconetti P, et al. Effect of laser irradiation on failure mechanism of TiCp reinforced titanium composite coating produced by laser cladding [J]. J. Mater. Process. Technol., 2014, 214: 2325
[24] Li Y J, Dong S Y, Yan S X, et al. Phase evolution of ductile iron during laser cladding processing [J]. Surf. Coat. Technol., 2018, 339: 37
[25] Kwon H, Suh C Y, Kim W. Preparation of a highly toughened (Ti, W)C-20Ni cermet through in situ formation of solid solution and WC whiskers [J]. Ceram. Int., 2015, 41: 4223
[26] Liang Y J, Che Y C. Handbook of Thermodynamics of Inorganic Materials [M]. Shenyang: Northeastern University Press, 1993: 45
[26] (梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993: 45)
[27] Zhang Z G, Liu X F, Bian X F. Thermodynamics and kinetic of forming TiC in Al-Ti-C system [J]. Acta Metall. Sin., 2000, 36: 1025
[27] (张作贵, 刘相法, 边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究 [J]. 金属学报, 2000, 36: 1025)
[28] Feng K Q, Yang Y, Shen B L. Study on the thermodynamics of high temperature chemical reaction of TiC/Fe composite synthesized by reaction-casting [J]. Hot Work. Technol., 2002, (6): 8
[28] (冯可芹, 杨 屹, 沈保罗. 反应铸造TiC/Fe复合材料过程中高温化学反应的热力学研究 [J]. 热加工工艺, 2002, (6): 8)
[29] Hu H Q. Principle of Metal Solidification [M]. Beijing: Mechanical Industry Press, 2012: 142
[29] (胡汉起. 金属凝固原理 [M]. 北京: 机械工业出版社, 2012: 142)
[30] Khalili A, Goodarzi M, Mojtahedi M, et al. Solidification microstructure of in-situ laser-synthesized Fe-TiC hard coating [J]. Surf. Coat. Technol., 2016, 307: 747
doi: 10.1016/j.surfcoat.2016.09.051
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.