Please wait a minute...
金属学报  2022, Vol. 58 Issue (9): 1108-1117    DOI: 10.11900/0412.1961.2021.00085
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化
杨天野, 崔丽(), 贺定勇, 黄晖
北京工业大学 材料与制造学部 北京 100124
Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting
YANG Tianye, CUI Li(), HE Dingyong, HUANG Hui
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
引用本文:

杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
Tianye YANG, Li CUI, Dingyong HE, Hui HUANG. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2022, 58(9): 1108-1117.

全文: PDF(4061 KB)   HTML
摘要: 

采用气雾化制粉技术原位合金化制备了AlSi10Mg-Er-Zr粉末,研究了选区激光熔化(SLM)成形AlSi10Mg-Er-Zr试样的相对密度、微观组织和力学性能。结果表明,SLM成形AlSi10Mg-Er-Zr试样的相对密度为99.20%,显微硬度为156.5 HV,室温抗拉强度达到461 MPa,屈服强度为304 MPa,相对于常规AlSi10Mg试样显微硬度提升了25.8%,抗拉强度和屈服强度分别提高了22.6%和26.7%。这是由于Er、Zr元素的加入,细化了SLM成形AlSi10Mg-Er-Zr试样的晶粒尺寸,并且使α-Al基体中Si元素的固溶度增加,由细晶强化和固溶强化机制共同作用提高了AlSi10Mg-Er-Zr合金的力学性能。

关键词 选区激光熔化AlSi10Mg-Er-Zr合金稀土元素显微组织力学性能    
Abstract

The AlSi10Mg alloy fabricated using selective laser melting (SLM) has attracted attention because of its excellent quality and properties. However, the mechanical properties of SLM AlSi10Mg alloy cannot meet the requirements of the high strength of aluminum alloys in the aerospace industry. To improve the mechanical properties of SLM AlSi10Mg alloy, AlSi10Mg-Er-Zr powders were prepared using in situ alloying mechanism and gas atomization. The relative density, microstructure, and mechanical properties of SLM AlSi10Mg-Er-Zr alloys have been investigated. The results show that the relative density of AlSi10Mg-Er-Zr alloys fabricated using SLM reaches 99.20%. The SLM AlSi10Mg-Er-Zr alloy has a microhardness value of 156.5 HV. The ultimate tensile strength (UTS) and yield strength (YS) of the SLM AlSi10Mg-Er-Zr alloy can reach 461 and 304 MPa, respectively. Compared with the conventional AlSi10Mg alloy, the microhardness has been increased by 25.8%; the UTS and YS are increased by 22.6% and 26.7%, respectively. The fine-grain and solid solution strengthening associated with SLM processing with the addition of Er and Zr elements, as a result of increased grain size refinement and solid solubility of Si element in the α-Al matrix, are responsible for the improvement in the mechanical properties.

Key wordsselective laser melting    AlSi10Mg-Er-Zr alloy    rare earth element    microstructure    mechanical property
收稿日期: 2021-02-26     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51621003)
作者简介: 杨天野,男,1996年生,硕士生
AlloyCuFeMgMnNiSiZnErZrAl
AlSi10Mg-Er-Zr≤ 0.050.110.300.37≤ 0.059.11≤ 0.100.640.41Bal.
AlSi10Mg≤ 0.050.150.350.45≤ 0.059.76≤ 0.10--Bal.
表 1  AlSi10Mg-Er-Zr及AlSi10Mg合金粉末化学成分 (mass fraction / %)
图1  AlSi10Mg-Er-Zr试样相对密度与激光能量密度的关系
图2  选区激光熔化(SLM)成形AlSi10Mg-Er-Zr试样宏观组织形貌
图3  SLM成形AlSi10Mg-Er-Zr及AlSi10Mg试样的SEM像
图4  SLM成形AlSi10Mg-Er-Zr及AlSi10Mg试样的XRD谱
SampleUTSYSHardness
MPaMPaHV
AlSi10Mg-Er-Zr461 ± 4304 ± 3156 ± 7
AlSi10Mg376 ± 4240 ± 3124 ± 5
表2  SLM成形AlSi10Mg-Er-Zr与AlSi10Mg试样的力学性能
图5  SLM成形AlSi10Mg-Er-Zr及AlSi10Mg试样组织反极图及晶粒尺寸分布图
图6  SLM成形AlSi10Mg-Er-Zr试样TEM像及HRTEM像
图7  SLM成形AlSi10Mg-Er-Zr及AlSi10Mg试样高倍SEM照片及EDS结果
图8  SLM成形AlSi10Mg-Er-Zr试样中合金元素分布
图 9  SLM成形AlSi10Mg-Er-Zr与AlSi10Mg试样Schmid因子分布图
图10  SLM成形AlSi10Mg-Er-Zr与AlSi10Mg试样织构分布图
SampleCubeGossRPShearBrassCopperS
AlSi10Mg-Er-Zr2.811.237.135.633.533.413.631.08
AlSi10Mg11.703.017.621.406.106.412.331.83
表3  SLM成形AlSi10Mg-Er-Zr与AlSi10Mg试样织构含量 (volume fraction / %)
1 Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing [J]. J. Mater. Eng., 2016, 44(2): 122
1 张学军, 唐思熠, 肇恒跃 等. 3D打印技术研究现状和关键技术 [J]. 材料工程, 2016, 44(2): 122
2 Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
2 巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66
3 Zhang S. Research on the forming processes and propertiesin selective laser melting of medical alloy powders [D]. Wuhan: Huazhong University of Science and Technology, 2014
3 张 升. 医用合金粉末激光选区熔化成形工艺与性能研究 [D]. 武汉: 华中科技大学, 2014
4 Chen J T, Guo Z Y, Wang C Y, et al. Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications [J]. Laser Technol., 2020, 44: 288
4 陈锦堂, 郭紫莹, 王成勇 等. 激光选区熔化Ti-6Al-4V在医疗器械领域的研究现状 [J]. 激光技术, 2020, 44: 288
5 Li X D, Zhao F. 3D printing technology impact on development of industrial design [J]. Key Eng. Mater., 2016, 693: 1901
doi: 10.4028/www.scientific.net/KEM.693.1901
6 Zhong X H. 3D printing technology applied in the field of racing lightweight [D]. Guangzhou: Guangdong University of Technology, 2019
6 钟兴华. 3D打印技术在赛车轻量化领域应用研究 [D]. 广州: 广东工业大学, 2019
7 Röttger A, Geenen K, Windmann M, et al. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material [J]. Mater. Sci. Eng., 2016, A678: 365
8 Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
8 张文奇, 朱海红, 胡志恒 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
doi: 10.11900/0412.1961.2016.00472
9 Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
10 Kempen K, Thijs L, Van Humbeeck J, et al. Mechanical properties of AlSi10Mg produced by selective laser melting [J]. Phys. Proc., 2012, 39: 439
doi: 10.1016/j.phpro.2012.10.059
11 Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J]. Mater. Des., 2012, 34: 159
doi: 10.1016/j.matdes.2011.07.067
12 Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development [J]. Mater. Des., 2015, 65: 417
doi: 10.1016/j.matdes.2014.09.044
13 Jiang L Y, Liu T T, Zhang C D, et al. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting [J]. Mater. Sci. Eng., 2018, A734: 171
14 Zhao Z Y, Bai P K, Misra R D K, et al. AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis [J]. J. Alloys Compd., 2019, 792: 203
doi: 10.1016/j.jallcom.2019.04.007
15 Xi L X, Gu D D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic [J]. J. Mater. Res. Technol., 2020, 9: 2611
doi: 10.1016/j.jmrt.2020.04.059
16 Xiao Y K, Bian Z Y, Wu Y, et al. Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting [J]. J. Alloys Compd., 2019, 798: 644
doi: 10.1016/j.jallcom.2019.05.279
17 Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
18 Wang H Q, Gu D D. Nanometric TiC reinforced AlSi10Mg nanocomposites: Powder preparation by high-energy ball milling and consolidation by selective laser melting [J]. J. Compos. Mater., 2015, 49: 1639
doi: 10.1177/0021998314538870
19 Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
doi: 10.1016/j.jmatprotec.2020.116618
20 Gao C, Wu W, Shi J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting [J]. Addit. Manuf., 2020, 34: 101378
21 Ye H, Huang J Q, Zhang J Q, et al. Microstructure and mechanical properties of nano-WC reinforced AlSi10Mg fabricated by selective laser melting [J]. J. Mater. Eng., 2020, 48(3): 75
21 叶 寒, 黄俊强, 张坚强 等. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能 [J]. 材料工程, 2020, 48(3): 75
22 Xue G, Ke L D, Zhu H H, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A764: 138155
23 Zhao X, Gu D D, Ma C L, et al. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites [J]. Vacuum, 2019, 160: 189
doi: 10.1016/j.vacuum.2018.11.022
24 Spierings A B, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition [J]. Addit. Manuf., 2018, 20: 173
25 Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2361
25 聂祚仁, 文胜平, 黄 晖 等. 铒微合金化铝合金的研究进展 [J]. 中国有色金属学报, 2011, 21: 2361
26 Feng Q N. Research on process, microstructures and properties of AlSi10Mg aluminum alloy prepared by laser melting deposition [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017
26 冯秋娜. 激光熔化沉积成形AlSi10Mg合金的工艺与组织性能研究 [D]. 南京: 南京航空航天大学, 2017
27 Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J]. Mater. Sci. Eng., 2016, A667: 139
28 Xing Z B, Nie Z R, Zou J X, et al. Existing form and effect of erbium in Al-Er alloy [J]. J. Chin. Rare Earth Soc., 2007, 25: 234
28 邢泽炳, 聂祚仁, 邹景霞 等. Al-Er合金铸锭中铒的存在形式及作用研究 [J]. 中国稀土学报, 2007, 25: 234
29 Loucif A, Figueiredo R B, Baudin T, et al. Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2012, A532: 139
30 Wu B L, Song L H, Wan G, et al. Distribution of generalized schmid factor in Euler orientation space and rollability of AZ31B alloy with basal texture [J]. J. Mater. Eng. Perform., 2020, 29: 8145
doi: 10.1007/s11665-020-05279-7
31 Yan H L. Mechanical behavior and texture evolution of low stacking fault energy FCC metals at large deformation [D]. Shenyang: Northeastern University, 2012
31 闫海乐. 大形变下低层错能面心立方金属力学行为和织构演化的研究 [D]. 沈阳: 东北大学, 2012
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.