|
|
选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化 |
杨天野, 崔丽( ), 贺定勇, 黄晖 |
北京工业大学 材料与制造学部 北京 100124 |
|
Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting |
YANG Tianye, CUI Li( ), HE Dingyong, HUANG Hui |
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China |
引用本文:
杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
Tianye YANG,
Li CUI,
Dingyong HE,
Hui HUANG.
Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. Acta Metall Sin, 2022, 58(9): 1108-1117.
1 |
Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing [J]. J. Mater. Eng., 2016, 44(2): 122
|
1 |
张学军, 唐思熠, 肇恒跃 等. 3D打印技术研究现状和关键技术 [J]. 材料工程, 2016, 44(2): 122
|
2 |
Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
|
2 |
巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66
|
3 |
Zhang S. Research on the forming processes and propertiesin selective laser melting of medical alloy powders [D]. Wuhan: Huazhong University of Science and Technology, 2014
|
3 |
张 升. 医用合金粉末激光选区熔化成形工艺与性能研究 [D]. 武汉: 华中科技大学, 2014
|
4 |
Chen J T, Guo Z Y, Wang C Y, et al. Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications [J]. Laser Technol., 2020, 44: 288
|
4 |
陈锦堂, 郭紫莹, 王成勇 等. 激光选区熔化Ti-6Al-4V在医疗器械领域的研究现状 [J]. 激光技术, 2020, 44: 288
|
5 |
Li X D, Zhao F. 3D printing technology impact on development of industrial design [J]. Key Eng. Mater., 2016, 693: 1901
doi: 10.4028/www.scientific.net/KEM.693.1901
|
6 |
Zhong X H. 3D printing technology applied in the field of racing lightweight [D]. Guangzhou: Guangdong University of Technology, 2019
|
6 |
钟兴华. 3D打印技术在赛车轻量化领域应用研究 [D]. 广州: 广东工业大学, 2019
|
7 |
Röttger A, Geenen K, Windmann M, et al. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material [J]. Mater. Sci. Eng., 2016, A678: 365
|
8 |
Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
|
8 |
张文奇, 朱海红, 胡志恒 等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
doi: 10.11900/0412.1961.2016.00472
|
9 |
Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
|
10 |
Kempen K, Thijs L, Van Humbeeck J, et al. Mechanical properties of AlSi10Mg produced by selective laser melting [J]. Phys. Proc., 2012, 39: 439
doi: 10.1016/j.phpro.2012.10.059
|
11 |
Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J]. Mater. Des., 2012, 34: 159
doi: 10.1016/j.matdes.2011.07.067
|
12 |
Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development [J]. Mater. Des., 2015, 65: 417
doi: 10.1016/j.matdes.2014.09.044
|
13 |
Jiang L Y, Liu T T, Zhang C D, et al. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting [J]. Mater. Sci. Eng., 2018, A734: 171
|
14 |
Zhao Z Y, Bai P K, Misra R D K, et al. AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis [J]. J. Alloys Compd., 2019, 792: 203
doi: 10.1016/j.jallcom.2019.04.007
|
15 |
Xi L X, Gu D D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic [J]. J. Mater. Res. Technol., 2020, 9: 2611
doi: 10.1016/j.jmrt.2020.04.059
|
16 |
Xiao Y K, Bian Z Y, Wu Y, et al. Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting [J]. J. Alloys Compd., 2019, 798: 644
doi: 10.1016/j.jallcom.2019.05.279
|
17 |
Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
|
18 |
Wang H Q, Gu D D. Nanometric TiC reinforced AlSi10Mg nanocomposites: Powder preparation by high-energy ball milling and consolidation by selective laser melting [J]. J. Compos. Mater., 2015, 49: 1639
doi: 10.1177/0021998314538870
|
19 |
Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
doi: 10.1016/j.jmatprotec.2020.116618
|
20 |
Gao C, Wu W, Shi J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting [J]. Addit. Manuf., 2020, 34: 101378
|
21 |
Ye H, Huang J Q, Zhang J Q, et al. Microstructure and mechanical properties of nano-WC reinforced AlSi10Mg fabricated by selective laser melting [J]. J. Mater. Eng., 2020, 48(3): 75
|
21 |
叶 寒, 黄俊强, 张坚强 等. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能 [J]. 材料工程, 2020, 48(3): 75
|
22 |
Xue G, Ke L D, Zhu H H, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A764: 138155
|
23 |
Zhao X, Gu D D, Ma C L, et al. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites [J]. Vacuum, 2019, 160: 189
doi: 10.1016/j.vacuum.2018.11.022
|
24 |
Spierings A B, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition [J]. Addit. Manuf., 2018, 20: 173
|
25 |
Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2361
|
25 |
聂祚仁, 文胜平, 黄 晖 等. 铒微合金化铝合金的研究进展 [J]. 中国有色金属学报, 2011, 21: 2361
|
26 |
Feng Q N. Research on process, microstructures and properties of AlSi10Mg aluminum alloy prepared by laser melting deposition [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017
|
26 |
冯秋娜. 激光熔化沉积成形AlSi10Mg合金的工艺与组织性能研究 [D]. 南京: 南京航空航天大学, 2017
|
27 |
Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J]. Mater. Sci. Eng., 2016, A667: 139
|
28 |
Xing Z B, Nie Z R, Zou J X, et al. Existing form and effect of erbium in Al-Er alloy [J]. J. Chin. Rare Earth Soc., 2007, 25: 234
|
28 |
邢泽炳, 聂祚仁, 邹景霞 等. Al-Er合金铸锭中铒的存在形式及作用研究 [J]. 中国稀土学报, 2007, 25: 234
|
29 |
Loucif A, Figueiredo R B, Baudin T, et al. Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion [J]. Mater. Sci. Eng., 2012, A532: 139
|
30 |
Wu B L, Song L H, Wan G, et al. Distribution of generalized schmid factor in Euler orientation space and rollability of AZ31B alloy with basal texture [J]. J. Mater. Eng. Perform., 2020, 29: 8145
doi: 10.1007/s11665-020-05279-7
|
31 |
Yan H L. Mechanical behavior and texture evolution of low stacking fault energy FCC metals at large deformation [D]. Shenyang: Northeastern University, 2012
|
31 |
闫海乐. 大形变下低层错能面心立方金属力学行为和织构演化的研究 [D]. 沈阳: 东北大学, 2012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|