Please wait a minute...
金属学报  2023, Vol. 59 Issue (1): 157-168    DOI: 10.11900/0412.1961.2022.00414
  研究论文 本期目录 | 过刊浏览 |
电弧熔丝增材制造2Cr13合金组织与性能各向异性行为
葛进国1,2, 卢照3, 何思亮1, 孙妍4, 殷硕2,5()
1.桂林电子科技大学 机电工程学院 桂林 541010
2.Trinity College Dublin, The University of Dublin, Dublin D02PN40, Ireland
3.桂林电子科技大学 材料科学与工程学院 桂林 541010
4.大连船舶重工集团有限公司 设计研究院 大连 116005
5.扬州大学 机械工程学院 扬州 225127
Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing
GE Jinguo1,2, LU Zhao3, HE Siliang1, SUN Yan4, YIN Shuo2,5()
1.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541010, China
2.Trinity College Dublin, The University of Dublin, Dublin D02PN40, Ireland
3.School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541010, China
4.Design & Research Institute, Dalian Shipbuilding Industry Co., Ltd., Dalian 116005, China
5.School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
引用本文:

葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
Jinguo GE, Zhao LU, Siliang HE, Yan SUN, Shuo YIN. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. Acta Metall Sin, 2023, 59(1): 157-168.

全文: PDF(6091 KB)   HTML
摘要: 

采用电弧熔丝增材制造(WAAM)技术进行多层单道结构2Cr13构件制备,揭示不同层间停留温度(110~550℃)下2Cr13电弧沉积件组织、性能各向异性演变规律,以实现关键工艺参数调控下力学性能主动控制。结果表明,550℃沉积件内针状马氏体因重熔碎晶呈细长外延状生长并具有略强织构取向,且于马氏体间隙处零散分布着很少量细小不规则逆变奥氏体。550℃沉积件因细晶强化获得了较高强度与硬度,但拉伸性能具有明显各向异性。110~180℃沉积件各区域间板条状马氏体虽大致沿沉积方向生长但无明显织构取向,马氏体晶粒因层间停留温度降低导致冷凝速率增加而略呈细化趋势。110~180℃沉积件因具有相近板条状马氏体组织,其力学性能较相近且呈各向同性。

关键词 电弧熔丝增材制造2Cr13合金显微组织力学性能各向异性    
Abstract

2Cr13 martensite stainless steel has been widely used for the manufacturing of surgical tools and turbine blades. Contrary to the conventional fabrication technologies, there are several remarkable advantages in the fabrication of 2Cr13 parts by adopting wire arc additive manufacturing (WAAM) technologies, such as excellent metallurgical bonding, high production efficiency, near-net-shape production, and limited environmental contamination. In this work, the effect of interlayer dwelling temperature (110-550oC) on microstructural and mechanical properties has been revealed, providing a new approach for the active control of the performances of 2Cr13 buildups produced by wire-arc additive manufacturing. The part with a dwelling temperature of 550oC was featured by elongated acicular martensite features, with a slightly enhanced fiber-like texture, along with minor fine irregular-reverse austenite structures, dispersed among martensite gaps. This special martensitic distribution was mainly caused by the grain-broken effect under the intensive thermal shock from liquid melting pool. Consequently, the enhanced tensile strength and microhardness were obtained due to grain refinement, although exhibiting an obvious anisotropy in tensile properties. The parts with dwelling temperatures of 110-180oC were characterized by relatively coarsened martensite laths, with a random texture type, within block-shaped ferrite matrix. The average martensite size was gradually refined due to the increased cooling rate by lowering interlayer temperature. The isotropic mechanical properties of all three parts (110-180oC) were similar because of the similar martensite laths.

Key wordswire arc additive manufacturing    2Cr13 alloy    microstructure    mechanical property    anisotropy
收稿日期: 2022-08-25     
ZTFLH:  TH142.3  
基金资助:中国博士后科学基金面上项目(2021M693230);广西自然科学基金青年项目(2021JJB160022)
作者简介: 葛进国,男,1990年生,博士
图1  电弧熔丝增材制造(WAAM) 2Cr13拉伸试样取样位置及其尺寸示意图
图2  2Cr13沉积件第15层中间位置原位温度测量曲线
图3  2Cr13沉积件中间部位腐蚀后宏观形貌OM像
图4  2Cr13沉积件在不同层间停留温度下的XRD谱
图5  2Cr13沉积件中间层组织形貌的OM像
图6  不同层间停留温度下的2Cr13沉积件垂直面的EBSD分析
图7  不同层间停留温度下垂直面铁素体相极图
图8  2Cr13沉积件内马氏体尺寸分布图
Temperature / oCMartensitic widthMartensitic length
Avg.Max.Min.Avg.Max.Min.
5502.05517.64091.441246.588790.10889.4287
1803.87047.45731.142433.317046.58939.8124
1504.07648.68131.072637.242050.924312.6153
1102.94745.46940.724626.725734.32529.8958
表1  马氏体尺寸统计结果 (μm)
图9  2Cr13沉积件中间层EBSD相分数分布图
图10  不同层间停留温度下2Cr13沉积件Y-Z面奥氏体相极图
图11  2Cr13沉积件中间部位沿沉积高度方向的硬度曲线
图12  2Cr13沉积件中间位置不同沉积面应力-位移曲线
图13  2Cr13沉积件中间位置拉伸性能的各向异性
图14  2Cr13沉积件不同层间停留温度拉伸断口形貌
1 Ge J G, Lin J, Fu H G, et al. A spatial periodicity of microstructural evolution and anti-indentation properties of wire-arc additive manufacturing 2Cr13 thin-wall part [J]. Mater. Des., 2018, 160: 218
doi: 10.1016/j.matdes.2018.09.021
2 Zhao M P, You P P, Liu M H. Pockmarks on ground surface of nitrided 2Cr13 steel [J]. Heat Treat. Met., 2020, 45(5): 176
2 赵明鹏, 游平平, 刘明虎. 2Cr13钢渗氮后磨削面的“麻点”问题 [J]. 金属热处理, 2020, 45(5): 176
3 Liu X, Yang J C, Yang L, et al. Effect of Ce on inclusions and impact property of 2Cr13 stainless steel [J]. J. Iron Steel Res. Int., 2010, 17: 59
4 Shao Y K. Effects of laser shock peening on cavitation erosion and cavitation-silt erosion resistance of 2Cr13 stainless steel [D]. Zhenjiang: Jiangsu University, 2020
4 邵亦锴. 激光冲击强化2Cr13不锈钢抗气蚀和空化—颗粒侵蚀行为研究 [D]. 镇江: 江苏大学, 2020
5 Ge J G, Lin J, Long Y H, et al. Microstructural evolution and mechanical characterization of wire arc additively manufactured 2Cr13 thin-wall part [J]. J. Mater. Res. Technol., 2021, 13: 1767
doi: 10.1016/j.jmrt.2021.05.110
6 Javurek M, Brummayer M, Wincor R. Turbulent flow measurements in continuous steel casting mold water model [J]. Mater. Today, 2022, 62: 2581
7 Wang H W, Zhang X Y, Tian Z P, et al. Effects of heat treatment process on microstructure, strength and toughness of 2Cr13 stainless steel [J]. Hot Work. Technol., 2020, 49(20): 124
7 王浩伟, 张戌有, 田志平 等. 热处理工艺对2Cr13不锈钢组织和强韧性的影响 [J]. 热加工工艺, 2020, 49(20): 124
8 Cao J C. Research on CAD&FEM of turbine blade die forging [D]. Qinhuangdao: Yanshan University, 2006
8 曹竟成. 汽轮机叶片模锻工艺CAD与模锻过程有限元分析 [D]. 秦皇岛: 燕山大学, 2006
9 Kumar N, Bhavsar H, Mahesh P V S, et al. Wire arc additive manufacturing—A revolutionary method in additive manufacturing [J]. Mater. Chem. Phys., 2022, 285: 126144
doi: 10.1016/j.matchemphys.2022.126144
10 Ren X L, Jiang X Q, Yuan T, et al. Microstructure and properties research of Al-Zn-Mg-Cu alloy with high strength and high elongation fabricated by wire arc additive manufacturing [J]. J. Mater. Process. Technol., 2022, 307: 117665
doi: 10.1016/j.jmatprotec.2022.117665
11 Tomar B, Shiva S, Nath T. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances [J]. Mater. Today, 2022, 31: 103739
12 Xia C Y, Pan Z X, Polden J, et al. A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system [J]. J. Manuf. Syst., 2020, 57: 31
doi: 10.1016/j.jmsy.2020.08.008
13 Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
13 孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
14 Du Z J, Li W Y, Liu J R, et al. Study on the uniformity of structure and mechanical properties of TC4-DT alloy deposited by CMT process [J]. Acta Metall. Sin., 2020, 56: 1667
14 杜子杰, 李文渊, 刘建荣 等. CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究 [J]. 金属学报, 2020, 56: 1667
15 Priarone P C, Campatelli G, Catalano A R, et al. Life-cycle energy and carbon saving potential of wire arc additive manufacturing for the repair of mold inserts [J]. CIRP J. Manuf. Sci. Technol., 2021, 35: 943
doi: 10.1016/j.cirpj.2021.10.007
16 Hassen A A, Noakes M, Nandwana P, et al. Scaling Up metal additive manufacturing process to fabricate molds for composite manufacturing [J]. Addit. Manuf., 2020, 32: 101093
17 Jing C C, Chen Z, Liu B, et al. Improving mechanical strength and isotropy for wire-arc additive manufactured 304L stainless steels via controlling arc heat input [J]. Mater. Sci. Eng., 2022, A845: 143223
18 Rodideal N, Machado C M, Infante V, et al. Mechanical characterization and fatigue assessment of wire and arc additively manufactured HSLA steel parts [J]. Int. J. Fatigue, 2022, 164: 107146
doi: 10.1016/j.ijfatigue.2022.107146
19 Ge J G, Xu R W, Wang C L, et al. Deposition structure dependence of microstructural evolution and mechanical anisotropy of H13 buildups using cold metal transfer technology [J]. J. Alloys Compd., 2022, 904: 163283
doi: 10.1016/j.jallcom.2021.163283
20 Klein T, Wojcik T, Arnoldt A. A hypoeutectic Al-Ni-Mg in situ composite processed by wire-arc additive manufacturing: Phase evolution and mechanical behavior [J]. Mater. Des., 2022, 222: 111066
doi: 10.1016/j.matdes.2022.111066
21 Nagasai B P, Malarvizhi S, Balasubramanian V. Mechanical properties and microstructural characteristics of wire arc additive manufactured 308 L stainless steel cylindrical components made by gas metal arc and cold metal transfer arc welding processes [J]. J. Mater. Process. Technol., 2022, 307: 117655
doi: 10.1016/j.jmatprotec.2022.117655
22 Krakhmalev P, Yadroitsava I, Fredriksson G, et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels [J]. Mater. Des., 2015, 87: 380
doi: 10.1016/j.matdes.2015.08.045
23 Zhu X C, Wen S F, Wei Q S. Microstructure and mechanical properties of mould steels AISI 420 and S136 by selective laser melting manufacturing [J]. Spec. Cast. Nonferrous Alloys, 2019, 39: 506
23 朱学超, 文世峰, 魏青松. AISI420与S136模具钢SLM成形组织及性能 [J]. 特种铸造及有色合金, 2019, 39: 506
24 Alvarez L F, Garcia C, Lopez V. Continuous cooling transformations in martensitic stainless steels [J]. ISIJ Int., 1994, 34: 516
doi: 10.2355/isijinternational.34.516
25 Fang R R, Deng N N, Zhang H B, et al. Effect of selective laser melting process parameters on the microstructure and properties of a precipitation hardening stainless steel [J]. Mater. Des., 2021, 212: 110265
doi: 10.1016/j.matdes.2021.110265
26 Deng F B, Yang G, Zhou S Y, et al. Effect of heat treatment on microstructural heterogeneity and mechanical properties of maraging steel fabricated by wire arc additive manufacturing using 4% nitrogen shielding gas [J]. Mater. Charact., 2022, 191: 112160
doi: 10.1016/j.matchar.2022.112160
27 Fang Y J, Kim M K, Zhang Y L, et al. Particulate-reinforced iron-based metal matrix composites fabricated by selective laser melting: A systematic review [J]. J. Manuf. Process., 2022, 74: 592
doi: 10.1016/j.jmapro.2021.12.018
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.