|
|
电弧增材制造2024铝合金的微观组织与力学性能 |
吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义( ) |
大连理工大学 高性能精密制造全国重点实验室 大连 116024 |
|
Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing |
WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi( ) |
State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China |
引用本文:
吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
Dongjiang WU,
Dehua LIU,
Ziao ZHANG,
Yilun ZHANG,
Fangyong NIU,
Guangyi MA.
Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. Acta Metall Sin, 2023, 59(6): 767-776.
1 |
Starke E A, Staley J T. Application of modern aluminum alloys to aircraft [J]. Prog. Aeosp. Sci., 1996, 32: 131
|
2 |
Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
|
2 |
张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
|
3 |
Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
|
4 |
Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeron. Manuf. Technol., 2018, 61(3): 74
|
4 |
李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
|
5 |
Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chin. J. Lasers, 2020, 47: 0500002
|
5 |
顾冬冬, 张红梅, 陈洪宇 等. 航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47: 0500002
|
6 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
7 |
Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
|
7 |
孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
|
8 |
Yang G, Peng H J, Li C F, et al. Microstructure and mechanical property research on wire + arc additive manufactured 5356-aluminum alloy [J]. Chin. J. Rare Met., 2020, 44: 249
|
8 |
杨 光, 彭晖杰, 李长富 等. 电弧增材制造5356铝合金的组织与性能研究 [J]. 稀有金属, 2020, 44: 249
|
9 |
Li C D, Gu H M, Wang W, et al. Microstructure and properties of ZL114A aluminum alloy prepared by wire arc additive manufacturing [J]. Rare Met. Mater. Eng., 2019, 48: 2917
|
9 |
李承德, 顾惠敏, 王 伟 等. 电弧增材制造ZL114A铝合金的组织与性能 [J]. 稀有金属材料与工程, 2019, 48: 2917
|
10 |
Gu J L, Ding J L, Williams S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys [J]. J. Mater. Process. Technol., 2016, 230: 26
doi: 10.1016/j.jmatprotec.2015.11.006
|
11 |
Gu J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy [J]. Mater. Sci. Eng., 2016, A651: 18
|
12 |
Cong B Q, Ding J L, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy [J]. Int. J. Adv. Manuf. Technol., 2015, 76: 1593
doi: 10.1007/s00170-014-6346-x
|
13 |
Gu J L, Ding J L, Cong B Q, et al. The influence of wire properties on the quality and performance of wire + arc additive manufactured aluminium parts [J]. Adv. Mater. Res., 2014, 1081: 210
|
14 |
Cong B Q, Sun H Y, Peng P, et al. Porosity control of wire + arc additively manufactured Al-6.3Cu alloy deposition using AC-GTAW process [J]. Rare Met. Mater. Eng., 2017, 46: 1359
|
14 |
从保强, 孙红叶, 彭 鹏 等. Al-6.3Cu AC-GTAW电弧增材成形的气孔控制 [J]. 稀有金属材料与工程, 2017, 46: 1359
|
15 |
Weingarten C, Buchbinder D, Pirch N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg [J]. J. Mater. Process. Technol., 2015, 221: 112
doi: 10.1016/j.jmatprotec.2015.02.013
|
16 |
Bai J Y, Fan C L, Yang Y C, et al. Microstructures of 2219-Al thin-walled parts produced by shaped metal deposition [J]. Trans. China Weld. Inst., 2016, 37(6): 124
|
16 |
柏久阳, 范成磊, 杨雨晨 等. 2219铝合金TIG填丝堆焊成形薄壁试样组织特征 [J]. 焊接学报, 2016, 37(6): 124
|
17 |
Ahuja B, Karg M, Nagulin K Y, et al. Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed [J]. Phys. Procedia, 2014, 56: 135
doi: 10.1016/j.phpro.2014.08.156
|
18 |
Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J]. Mater. Sci. Eng., 2014, A590: 153
|
19 |
Qian M, Cao P, Easton M A, et al. An analytical model for constitutional supercooling-driven grain formation and grain size prediction [J]. Acta Mater., 2010, 58: 3262
doi: 10.1016/j.actamat.2010.01.052
|
20 |
Chakraborty S, Sarkar S, Dutta P. Effect of constitutional supercooling on the numerical solution of species concentration distribution in laser surface alloying [J]. Metall. Mater. Trans., 2001, 32B: 969
|
21 |
Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
|
22 |
Chen F Y, Jie W Q. Study of microsegregation in Al-Cu-Zn ternary alloys by experiment and scheil model [J]. Acta Metall. Sin., 2004, 40: 664
|
22 |
陈福义, 介万奇. Al-Cu-Zn合金微观偏析的实验和Scheil模型研究 [J]. 金属学报, 2004, 40: 664
|
23 |
Bocklund B, Bobbio L D, Otis R A, et al. Experimental validation of Scheil-Gulliver simulations for gradient path planning in additively manufactured functionally graded materials [J]. Materialia, 2020, 11: 100689
doi: 10.1016/j.mtla.2020.100689
|
24 |
Shi D K. Fundamentals of Materials Science [M]. 2nd Ed., Beijing: China Machine Press, 2003: 232
|
24 |
石德珂. 材料科学基础 [M]. 第 2版, 北京: 机械工业出版社, 2003: 232
|
25 |
Marlaud T, Deschamps A, Bley F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys [J]. Acta Mater., 2010, 58: 248
doi: 10.1016/j.actamat.2009.09.003
|
26 |
Bai J Y, Fan C L, Lin S B, et al. Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 2615
doi: 10.1007/s00170-016-8633-1
|
27 |
Staley J T, Haupin W. Aluminum and aluminum alloys [M]. New York: John Wiley & Sons Inc, 2000: 186
|
28 |
Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Prog. Mater. Sci., 2015, 74: 401
doi: 10.1016/j.pmatsci.2015.03.002
|
29 |
Bai J Y, Fan C L, Lin S B, et al. Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment [J]. J. Mater. Eng. Perform., 2017, 26: 1808
doi: 10.1007/s11665-017-2627-5
|
30 |
Liu D H, Wu D J, Ma G Y, et al. Effect of post-deposition heat treatment on laser-TIG hybrid additive manufactured Al-Cu alloy [J]. Virtual Phys. Prototyp., 2020, 15: 445
doi: 10.1080/17452759.2020.1818021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|