Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1243-1252    DOI: 10.11900/0412.1961.2023.00147
  研究论文 本期目录 | 过刊浏览 |
激光增材修复单晶高温合金的热裂纹形成机制
卢楠楠1, 郭以沫1,2, 杨树林3, 梁静静1, 周亦胄1, 孙晓峰1, 李金国1()
1中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2沈阳工业大学 材料科学与工程学院 沈阳 110870
3中国航发沈阳黎明航空发动机有限责任公司 沈阳 110043
Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys
LU Nannan1, GUO Yimo1,2, YANG Shulin3, LIANG Jingjing1, ZHOU Yizhou1, SUN Xiaofeng1, LI Jinguo1()
1Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
3AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China
引用本文:

卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
Nannan LU, Yimo GUO, Shulin YANG, Jingjing LIANG, Yizhou ZHOU, Xiaofeng SUN, Jinguo LI. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1243-1252.

全文: PDF(2866 KB)   HTML
摘要: 

以第二代单晶高温合金DD432为研究对象开展激光增材修复实验,利用实验与理论计算相结合的手段,分析和研究了单晶高温合金在激光增材修复过程中的热裂纹形成机制。结果表明,单晶修复区内热裂纹在大角度晶界处形成,裂纹两侧呈现显著应力集中,裂纹源区域分布大量MC型碳化物。热裂纹的形成取决于液膜的稳定性、应力集中及碳化物析出相的共同作用。液膜稳定性取决于枝晶凝并过冷度,并与相邻晶粒间的晶界角度密切相关。基于Rappaz枝晶凝固过冷理论,计算获得DD432单晶合金形成稳定液膜的最小晶界角为2.9°,即该合金热裂纹形成的临界角;大角度晶界处的枝晶凝并过冷度为395 K,远高于晶粒内部枝晶间液膜的过冷度(29.58 K)以及小角度晶界(3.6°)处的枝晶凝并过冷度(56 K),大角度晶界为开裂提供了稳定液膜;沉积区内部的高水平应力集中驱动了热裂纹的萌生与扩展;MC型碳化物析出相通过“钉扎作用”抑制液相补缩及弱化与基体之间结合强度等作用进一步促进了热裂纹形成。

关键词 单晶高温合金热裂纹增材制造显微组织液膜稳定性    
Abstract

Hot cracking is a prevalent defect in metallurgy that often occurs during the laser additive repair of single crystal superalloys. The understanding of the cracking mechanism is vital for defect prevention. Consequently, this study entails combining experimental analysis and theoretical calculations to investigate the hot cracking mechanism in a second-generation single crystal superalloy, DD432, during laser additive repairing. The incident of hot cracking was observed predominantly at high-angle grain boundaries (HAGBs). High-magnitude stress concentrations were identified on both sides of the crack, accompanied by an extensive distribution of MC-type carbides in the crack initiation region. Hot cracking depended on factors such as liquid film stability, stress concentration, and MC-type carbide precipitates. The stability of the liquid film depended on dendrite coalescence undercooling, which in turn was related to the angle of grain boundaries. According to Rappaz's theory of dendrite coalescence undercooling, the calculated dendrite coalescence undercooling at HAGBs was 395 K. This figure was substantially higher than the 38 K liquid film undercooling found within a single dendrite, and far exceeded the undercooling at a low-angle grain boundary (3.6°) with a value of 56 K. The elevated level of stress concentration served as a driving force for crack initiation and propagation. MC-type carbide precipitates promoted crack initiation through a pinning effect on the liquid feed, thereby weakening the interface bonding strength with the substrate.

Key wordssingle crystal superalloy    hot crack    additive manufacturing    microstructure    liquid film stability
收稿日期: 2023-04-03     
ZTFLH:  TG665  
基金资助:国家重点研发计划项目(2021YFB3702503);中国博士后科学基金项目(2022M723211)
作者简介: 卢楠楠,男,1987年生,博士
图1  DD432单晶高温合金激光增材薄壁试样的宏观裂纹形貌
图2  沉积区纵截面裂纹微观形貌的OM像
图3  纵向裂纹断口形貌及裂纹尖端液膜分布的SEM像
图4  裂纹源区域组织形貌及取向特征
图5  裂纹源区域局部取向差(KAM)分布图
图6  裂纹源区域局部放大组织及取向特征
图7  裂纹源局部区域元素面分布
图8  裂纹萌生处的组织形貌的BSE像及EDS分析
Physical parameterValueUnitRef.
Shear modulus G86.3GPa[29]
Burgers vector b3.578 × 10-10m[30]
Solid/liquid interfacial energy γsl310mJ·m-2[31]
Poisson ratio ν0.467-[29]
表1  计算枝晶凝并过冷及晶界能所需的热物理参数[29~31]
图9  晶界角与枝晶凝并温度及晶界能之间的关系
图10  DD432单晶高温合金凝并温度与固相分数之间的关系
1 Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
doi: 10.1016/j.actamat.2009.08.018
2 Lopez-Galilea I, Ruttert B, He J Y, et al. Additive manufacturing of CMSX-4 Ni-base superalloy by selective laser melting: Influence of processing parameters and heat treatment [J]. Addit. Manuf., 2019, 30: 100874
3 Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709 pmid: 27443900
4 Wang L, Wang N, Yao W J, et al. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys [J]. Acta Mater., 2015, 88: 283
doi: 10.1016/j.actamat.2015.01.063
5 Liang Y J, Cheng X, Li J, et al. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys: New processing-microstructure maps involving powder feeding [J]. Mater. Des., 2017, 130: 197
doi: 10.1016/j.matdes.2017.05.066
6 Ur Rahman N, Capuano L, Cabeza S, et al. Directed energy deposition and characterization of high-carbon high speed steels [J]. Addit. Manuf., 2019, 30: 100838
7 Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
doi: 10.1016/j.matdes.2018.10.042
8 Thompson S M, Bian L K, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics [J]. Addit. Manuf., 2015, 8: 36
9 Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
doi: 10.1016/S1359-6454(00)00367-0
10 Liang Y J, Wang H M. Origin of stray-grain formation and epitaxy loss at substrate during laser surface remelting of single-crystal nickel-base superalloys [J]. Mater. Des., 2016, 102: 297
doi: 10.1016/j.matdes.2016.04.051
11 Wang L, Wang N. Effect of substrate orientation on the formation of equiaxed stray grains in laser surface remelted single crystal superalloys: Experimental investigation [J]. Acta Mater., 2016, 104: 250
doi: 10.1016/j.actamat.2015.11.018
12 Guo J C, Chen W J, Yang R N, et al. The effect of substrate orientation on stray grain formation in the (111) plane in laser surface remelted single crystal superalloys [J]. J. Alloys Compd., 2019, 800: 240
doi: 10.1016/j.jallcom.2019.06.029
13 Wang L, Wang N, Provatas N. Liquid channel segregation and morphology and their relation with hot cracking susceptibility during columnar growth in binary alloys [J]. Acta Mater., 2017, 126: 302
doi: 10.1016/j.actamat.2016.11.058
14 Wang N, Mokadem S, Rappaz M, et al. Solidification cracking of superalloy single- and bi-crystals [J]. Acta Mater., 2004, 52: 3173
doi: 10.1016/j.actamat.2004.03.047
15 Carter L N, Martin C, Withers P J, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy [J]. J. Alloys Compd., 2014, 615: 338
doi: 10.1016/j.jallcom.2014.06.172
16 Ruttert B, Ramsperger M, Roncery L M, et al. Impact of hot isostatic pressing on microstructures of CMSX-4 Ni-base superalloy fabricated by selective electron beam melting [J]. Mater. Des., 2016, 110: 720
doi: 10.1016/j.matdes.2016.08.041
17 Ojo O A, Richards N L, Chaturvedi M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy [J]. Scr. Mater., 2004, 50: 641
doi: 10.1016/j.scriptamat.2003.11.025
18 Chauvet E, Kontis P, Jägle E A, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting [J]. Acta Mater., 2018, 142: 82
doi: 10.1016/j.actamat.2017.09.047
19 Ramakrishnan A, Dinda G P. Direct laser metal deposition of Inconel 738 [J]. Mater. Sci. Eng., 2019, A740-741: 1
20 Boswell J H, Clark D, Li W, et al. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy [J]. Mater. Des., 2019, 174: 107793
doi: 10.1016/j.matdes.2019.107793
21 Yang J J, Li F Z, Wang Z M, et al. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication [J]. J. Mater. Process. Technol., 2015, 225: 229
doi: 10.1016/j.jmatprotec.2015.06.002
22 Dantzig J A, Rappaz M. Solidification [M]. 2nd Edition -Revised & Expanded. Switzerland: EPFL Press, 2016: 618
23 Rong P, Wang N, Wang L, et al. The influence of grain boundary angle on the hot cracking of single crystal superalloy DD6 [J]. J. Alloys Compd., 2016, 676: 181
doi: 10.1016/j.jallcom.2016.03.164
24 Ci S W. Study on microstructure and mechanical properties of nickel-based single crystal superalloy by laser additive manufacturing [D]. Shenyang: University of Science and Technology of China(Institute of Metal Research, CAS), 2021
24 慈世伟. 激光增材制造镍基单晶高温合金显微组织和力学性能研究 [D]. 沈阳: 中国科学技术大学(中国科学院金属研究所), 2021
25 Lu N N, Lei Z L, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition [J]. Addit. Manuf., 2020, 34: 101228
26 Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
27 Rappaz M, Jacot A, Boettinger W J. Last-stage solidification of alloys: Theoretical model of dendrite-arm and grain coalescence [J]. Metall. Mater. Trans., 2003, 34A: 467
28 Anderson P M, Hirth J P, Lothe J. Theory of Dislocations [M]. 3rd Ed., Cambridge: Cambridge University Press, 2017: 536
29 Academic Committee of the Superalloys. China Superalloys Handbook [M]. Beijing: Standards Press of China, 2012: 589
29 中国金属学会高温材料分会. 中国高温合金手册 [M]. 北京: 中国标准出版社, 2012: 589
30 Read W T, Shockley W. Dislocation models of crystal grain boundaries [J]. Phys. Rev., 1950, 78: 275
doi: 10.1103/PhysRev.78.275
31 Asta M, Hoyt J J, Karma A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations [J]. Phys. Rev., 2002, 66B: 100101
32 Kurz W, Fisher D J. Fundamentals of Solidification [M]. 4th Ed., Switzerland: Trans Tech Publications Ltd, 1998: 51
33 Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
34 Frenk A, Marsden C F, Wagniere J D, et al. Influence of an intermediate layer on the residual stress field in a laser clad [J]. Surf. Coat. Technol., 1991, 45: 435
doi: 10.1016/0257-8972(91)90253-S
35 Mukherjee T, Zhang W, Debroy T. An improved prediction of residual stresses and distortion in additive manufacturing [J]. Comput. Mater. Sci., 2017, 126: 360
doi: 10.1016/j.commatsci.2016.10.003
36 Kattamis T Z, Voorhees P W. Coarsening of solid-liquid mixtures: A review [A]. Proceedings of the Merton C. Flemings Symposium on Solidification and Materials Processing [C]. Cambridge, MA: TMS, 2000: 119
37 Huang Q Y, Li H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000: 67
37 黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 67
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[7] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[8] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[9] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[10] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[11] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[12] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[13] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[14] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[15] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.