Please wait a minute...
金属学报  2023, Vol. 59 Issue (5): 647-656    DOI: 10.11900/0412.1961.2021.00313
  本期目录 | 过刊浏览 |
热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响
张东阳1, 张钧1, 李述军2(), 任德春2, 马英杰2, 杨锐2
1沈阳大学 机械工程学院 沈阳 110044
2中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting
ZHANG Dongyang1, ZHANG Jun1, LI Shujun2(), REN Dechun2, MA Yingjie2, YANG Rui2
1College of Mechanical Engineering, Shenyang University, Shenyang 110044, China
2Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
Dongyang ZHANG, Jun ZHANG, Shujun LI, Dechun REN, Yingjie MA, Rui YANG. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(5): 647-656.

全文: PDF(3846 KB)   HTML
摘要: 

通过XRD、OM、SEM和压缩实验等方法,研究了热处理对选区激光熔化制备Ti-5Al-5Mo-5V-3Cr-1Zr (Ti55531)合金多孔材料组织和力学性能的影响。结果表明,在750~900℃之间进行固溶处理随后于500~600℃之间进行时效处理,Ti55531合金多孔材料的孔梁组织由α相和β相组成。随着固溶温度升高,孔梁中初生α相含量减少,次生α相含量增加,孔梁母材抗压强度升高但塑性降低,造成其韧性变差。随着时效温度的升高,孔梁中初生α相形状、尺寸和含量无明显变化,次生α相的含量减少而尺寸增加,孔梁母材抗压强度降低,塑性增加,使其韧性提高。Ti55531合金多孔材料抗压强度与其孔梁母材韧性密切相关,通过热处理调节孔梁母材强度和塑性匹配,提高其韧性,能够有效改善多孔材料的压缩强度。

关键词 Ti55531合金多孔材料选区激光熔化热处理显微组织力学性能    
Abstract

Lightweight metallic cellular components with high strength have received extensive interest because they are desirable for structural components. Previously, titanium alloy cellular structures were formed using additive manufacturing with the selective laser melting or electron beam melting technique. Numerous techniques have been developed to improve their strength. Most of these studies have focused on structure topology design. The relationship between the strength and mechanical properties of their strut parent materials has gained considerable attention. XRD, OM, SEM, and compression tests were used to investigate the effects of heat treatment on the microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr (Ti55531) alloy porous materials prepared through selective laser melting. The results show that the microstructure in struts consist of α and β phases after solution treatment at a temperature between 750oC and 900oC followed by an aging treatment at a temperature between 500oC and 600oC. The volume fraction of the primary α phase in the struts decreases as the solution temperature rises, whereas the volume fraction of the secondary α phase increases. The strut parent material's compressive strength increases but its elongation decreases, resulting in a decrease in toughness. With the increase of aging temperature, the shape, size, and volume fraction of the primary α phase in the strut do not change considerably, whereas the volume fraction of the secondary α phase decreases and the size increases. The strut parent material's compressive strength decreases while elongation increases, increa-sing toughness. The compressive strength of the examined porous alloy is strongly connected to the toughness of the parent material of the struts, which can be effectively improved by adjusting the strength and plasticity of the struts through heat treatment. The above results will guide the design of lightweight metallic cellular components with high strength.

Key wordsTi55531 alloy    porous material    selective laser melting    heat treatment    microstructure    mechanical property
收稿日期: 2021-07-30     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金项目(51871220);国家自然科学基金项目(51631007);辽宁省自然科学基金项目(LACT-007);冲击波物理与爆轰物理重点实验室基金项目(2022JCJQLB05702)
作者简介: 张东阳,男,1996年生,硕士生
SpecimenSolution temperatureSolution timeCoolingAging temperatureAging timeCooling
oChoCh
A---5004Air cooling
B7501Air cooling5004Air cooling
C8001Air cooling5004Air cooling
D9001Air cooling5004Air cooling
E8001Air cooling6004Air cooling
FAs-fabricated-----
表1  Ti55531多孔材料热处理工艺
图1  Ti55531合金粉末形貌及粒度分布
图2  Ti55531合金多孔材料结构模型和选区激光熔化打印样品
图3  Ti55531多孔材料孔梁原始态和经过不同热处理制度处理后的XRD谱
图4  Ti55531多孔材料原始态孔梁横截面显微组织的OM和SEM像
图5  Ti55531多孔材料孔梁表面形貌的SEM像
图6  不同温度固溶1 h随后500℃时效处理4 h后Ti55531多孔材料孔梁组织的OM像
图7  不同温度固溶处理1 h随后500℃时效处理4 h后Ti55531多孔材料孔梁组织的SEM像
Specimenαpαsβ
A-973
B25696
C17776
D-964
E17749
F--100
表2  不同热处理后Ti55531合金多孔材料孔梁中相含量 (%)
图8  经800℃固溶处理1 h随后在不同温度时效处理4 h后Ti55531多孔材料孔梁组织的OM像
图9  经800℃固溶处理1 h随后在不同温度时效处理4 h后Ti55531多孔材料孔梁组织的SEM像
图10  热处理后Ti55531多孔材料孔梁母材压缩应力-应变曲线和压缩强度
图11  热处理后Ti55531多孔材料压缩应力-应变曲线和压缩强度
图12  不同热处理后Ti55531合金多孔材料孔梁母材压缩断裂能
1 Zhang E L, Wang X Y, Han Y. Research status of biomedical porous Ti and its alloy in china[J]. Acta. Metall. Sin., 2017, 53: 1555
1 张二林, 王晓燕, 憨 勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53: 1555
2 Ren D C, Li S J, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique[J]. J. Mater. Sci. Technol., 2019, 35: 285
doi: 10.1016/j.jmst.2018.09.066
3 Liu Y J, Ren D C, Li S J, et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting[J]. Addit. Manuf., 2020, 32: 101060
4 Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. 2nd Ed., Cambridge: Cambridge University Press, 1999: 12
5 Li X, Xiao L J, Song W D. Dynamic behavior of 3D printed graded gyroid structures under impact loading[J]. Chin. J. High Pressure Phys., 2021, 35(3): 90
5 厉 雪, 肖李军, 宋卫东. 3D打印梯度Gyroid结构的动态冲击响应[J]. 高压物理学报, 2021, 35(3): 90
6 Luxner M H, Woesz A, Stampfl J, et al. A finite element study on the effects of disorder in cellular structures[J]. Acta Biomater., 2009, 5: 381
doi: 10.1016/j.actbio.2008.07.025 pmid: 18753022
7 Vesenjak M, Krstulović-Opara L, Ren Z, et al. Cell shape effect evaluation of polyamide cellular structures[J]. Polym. Test., 2010, 29: 991
doi: 10.1016/j.polymertesting.2010.09.001
8 Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method[J]. Acta Biomater., 2014, 10: 4537
doi: 10.1016/j.actbio.2014.06.010 pmid: 24969664
9 Jang D, Meza L R, Greer F, et al. Fabrication and deformation of three-dimensional hollow ceramic nanostructures[J]. Nat. Mater., 2013, 12: 893
doi: 10.1038/nmat3738 pmid: 23995324
10 Zheng X Y, Lee H, Weisgraber T H, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344: 1373
doi: 10.1126/science.1252291 pmid: 24948733
11 Bauer J, Schroer A, Schwaiger R, et al. Approaching theoretical strength in glassy carbon nanolattices[J]. Nat. Mater., 2016, 15: 438
doi: 10.1038/nmat4561 pmid: 26828314
12 Zhao S, Hou W T, Hao Y L, et al. Influence of annealing treatment on microstructure and mechanical properties of graded structure Ti-6Al-4V alloys[J]. Rare Met. Mater. Eng., 2017, 46(suppl.1) : 195
12 赵 朔, 侯文韬, 郝玉琳 等. 退火处理对梯度多孔Ti-6Al-4V合金组织和力学性能的影响[J]. 稀有金属材料与工程, 2017, 46(): 195
13 Yang K, Wang J, Jia L, et al. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation[J]. J. Mater. Sci. Technol., 2018, 35: 303
doi: 10.1016/j.jmst.2018.10.029
14 Huang J F, Yong Q L, Sun X J, et al. Influence of heat treatment process on microstructure and tensile property of Ti55531 titanium alloy[J]. Mater. Mech. Eng., 2014, 38(8): 20
14 黄剑锋, 雍岐龙, 孙新军 等. 热处理工艺对Ti55531钛合金显微组织与拉伸性能的影响[J]. 机械工程材料, 2014, 38(8): 20
15 Jones N G, Dashwood R J, Dye D, et al. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr[J]. Mater. Sci. Eng., 2008, A490: 369
16 Min X H, Xu F, Sun S Y. Effects of heat treatment processes on microstructure and tensile properties of Ti55531 alloy[J]. Mater. Mech. Eng., 2015, 39(11): 14
16 闵新华, 徐 锋, 孙书英. 热处理工艺对Ti55531合金组织和拉伸性能的影响[J]. 机械工程材料, 2015, 39(11): 14
17 Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting[J]. Acta Mater., 2017, 126: 58
doi: 10.1016/j.actamat.2016.12.052
18 Khorev A I. Alloying and heat treatment of structural (α + β) titanium alloys of high and superhigh strength[J]. Russ. Eng. Res., 2010, 30: 682
doi: 10.3103/S1068798X10070075
19 Ivasishin O M, Markovsky P E, Semiatin S L, et al. Aging response of coarse-and fine-grained β titanium alloys[J]. Mater. Sci. Eng., 2005, A405: 296
20 Gerd L, James C W. Titanium[M]. Germany: Die Deutsche Bibliothek, 2003: 6
21 Chao Q, Thomas S, Birbilis N, et al. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel[J]. Mater. Sci. Eng., 2021, A821: 141611
22 Bertsch K M, de Bellefon G M, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L[J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
23 Wang Q J, Sun Y L, Shuang Y X, et al. Aging-hardening behavior and phase transition kinetics of a novel β-Ti alloy[J]. Chin. J. Rare Met., 2019, 43: 1103
23 王庆娟, 孙亚玲, 双翼翔 等. 新型β钛合金的时效机制和相变动力学研究[J]. 稀有金属, 2019, 43: 1103
24 Guan J, Liu J R, Lei J F, et al. The relationship of heat treatment-microstructures-mechanical properties of the TC18 titanium alloy[J]. Chin. J. Mater. Res., 2009, 23: 77
24 官 杰, 刘建荣, 雷家峰 等. TC18钛合金的组织和性能与热处理制度的关系[J]. 材料研究学报, 2009, 23: 77
25 Li Y, Zhang L, Zhu Z W, et al. Influence of heat treatment on microstructure and mechanical properties of a high-strength Zr-Ti alloy[J]. Acta. Metall. Sin., 2014, 50: 19
doi: 10.3724/SP.J.1037.2013.00498
25 李 烨, 张 龙, 朱正旺 等. 热处理对一种高强Zr-Ti合金组织和力学性能的影响[J]. 金属学报, 2014, 50: 19
26 Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy[J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
27 Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys[J]. Mater. Sci. Eng., 1999, A263: 117
28 Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy[J]. Acta Mater., 1999, 47: 1019
doi: 10.1016/S1359-6454(98)00364-4
29 Wu W H, Xiao D M, Yang Y Q, et al. Analysis on powder adhesion problems in selective laser melting forming process[J]. Hot Work. Technol., 2016, 45(24): 43
29 吴伟辉, 肖冬明, 杨永强 等. 激光选区熔化成型过程的粉末粘附问题分析[J]. 热加工工艺, 2016, 45(24): 43
30 Wu W H, Yang Y Q, Mao X, et al. Sidewall precision analysis of metal part formed by selective laser melting[A]. Proceedings of 2015 Optics and Precision Engineering Forum [C]. Changchun: Science and Technology Press, 2015: 164
30 吴伟辉, 杨永强, 毛 星 等. 激光选区熔化增材制造零件侧壁成型精度分析[A]. 2015光学精密工程论坛论文集 [C]. 长春: 科技出版社, 2015: 164
31 Pugno N, Ciavarella M, Cornetti P, et al. A generalized Paris' law for fatigue crack growth[J]. J. Mech. Phys. Solids, 2006, 54: 1333
doi: 10.1016/j.jmps.2006.01.007
32 Li H F. Investigation on fracture toughness and crack growth mechanism of high-strength steels[D]. Hefei: University of Science and Technology of China, 2019
32 李鹤飞. 高强钢断裂韧性与裂纹扩展机制研究[D]. 合肥: 中国科学技术大学, 2019
33 Wen M P, Pang H Y, Tang M F, et al. Toughness measurement of explosive based on fracture energy of the stress-strain curve[J]. Chin. J. Energ. Mater., 2015, 23: 351
33 温茂萍, 庞海燕, 唐明峰 等. 基于应力应变曲线的断裂能参数表征炸药韧性[J]. 含能材料, 2015, 23: 351
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.