|
|
热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响 |
张东阳1, 张钧1, 李述军2( ), 任德春2, 马英杰2, 杨锐2 |
1沈阳大学 机械工程学院 沈阳 110044 2中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting |
ZHANG Dongyang1, ZHANG Jun1, LI Shujun2( ), REN Dechun2, MA Yingjie2, YANG Rui2 |
1College of Mechanical Engineering, Shenyang University, Shenyang 110044, China 2Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
Dongyang ZHANG,
Jun ZHANG,
Shujun LI,
Dechun REN,
Yingjie MA,
Rui YANG.
Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(5): 647-656.
1 |
Zhang E L, Wang X Y, Han Y. Research status of biomedical porous Ti and its alloy in china[J]. Acta. Metall. Sin., 2017, 53: 1555
|
1 |
张二林, 王晓燕, 憨 勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53: 1555
|
2 |
Ren D C, Li S J, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique[J]. J. Mater. Sci. Technol., 2019, 35: 285
doi: 10.1016/j.jmst.2018.09.066
|
3 |
Liu Y J, Ren D C, Li S J, et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting[J]. Addit. Manuf., 2020, 32: 101060
|
4 |
Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. 2nd Ed., Cambridge: Cambridge University Press, 1999: 12
|
5 |
Li X, Xiao L J, Song W D. Dynamic behavior of 3D printed graded gyroid structures under impact loading[J]. Chin. J. High Pressure Phys., 2021, 35(3): 90
|
5 |
厉 雪, 肖李军, 宋卫东. 3D打印梯度Gyroid结构的动态冲击响应[J]. 高压物理学报, 2021, 35(3): 90
|
6 |
Luxner M H, Woesz A, Stampfl J, et al. A finite element study on the effects of disorder in cellular structures[J]. Acta Biomater., 2009, 5: 381
doi: 10.1016/j.actbio.2008.07.025
pmid: 18753022
|
7 |
Vesenjak M, Krstulović-Opara L, Ren Z, et al. Cell shape effect evaluation of polyamide cellular structures[J]. Polym. Test., 2010, 29: 991
doi: 10.1016/j.polymertesting.2010.09.001
|
8 |
Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method[J]. Acta Biomater., 2014, 10: 4537
doi: 10.1016/j.actbio.2014.06.010
pmid: 24969664
|
9 |
Jang D, Meza L R, Greer F, et al. Fabrication and deformation of three-dimensional hollow ceramic nanostructures[J]. Nat. Mater., 2013, 12: 893
doi: 10.1038/nmat3738
pmid: 23995324
|
10 |
Zheng X Y, Lee H, Weisgraber T H, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344: 1373
doi: 10.1126/science.1252291
pmid: 24948733
|
11 |
Bauer J, Schroer A, Schwaiger R, et al. Approaching theoretical strength in glassy carbon nanolattices[J]. Nat. Mater., 2016, 15: 438
doi: 10.1038/nmat4561
pmid: 26828314
|
12 |
Zhao S, Hou W T, Hao Y L, et al. Influence of annealing treatment on microstructure and mechanical properties of graded structure Ti-6Al-4V alloys[J]. Rare Met. Mater. Eng., 2017, 46(suppl.1) : 195
|
12 |
赵 朔, 侯文韬, 郝玉琳 等. 退火处理对梯度多孔Ti-6Al-4V合金组织和力学性能的影响[J]. 稀有金属材料与工程, 2017, 46(): 195
|
13 |
Yang K, Wang J, Jia L, et al. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation[J]. J. Mater. Sci. Technol., 2018, 35: 303
doi: 10.1016/j.jmst.2018.10.029
|
14 |
Huang J F, Yong Q L, Sun X J, et al. Influence of heat treatment process on microstructure and tensile property of Ti55531 titanium alloy[J]. Mater. Mech. Eng., 2014, 38(8): 20
|
14 |
黄剑锋, 雍岐龙, 孙新军 等. 热处理工艺对Ti55531钛合金显微组织与拉伸性能的影响[J]. 机械工程材料, 2014, 38(8): 20
|
15 |
Jones N G, Dashwood R J, Dye D, et al. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr[J]. Mater. Sci. Eng., 2008, A490: 369
|
16 |
Min X H, Xu F, Sun S Y. Effects of heat treatment processes on microstructure and tensile properties of Ti55531 alloy[J]. Mater. Mech. Eng., 2015, 39(11): 14
|
16 |
闵新华, 徐 锋, 孙书英. 热处理工艺对Ti55531合金组织和拉伸性能的影响[J]. 机械工程材料, 2015, 39(11): 14
|
17 |
Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting[J]. Acta Mater., 2017, 126: 58
doi: 10.1016/j.actamat.2016.12.052
|
18 |
Khorev A I. Alloying and heat treatment of structural (α + β) titanium alloys of high and superhigh strength[J]. Russ. Eng. Res., 2010, 30: 682
doi: 10.3103/S1068798X10070075
|
19 |
Ivasishin O M, Markovsky P E, Semiatin S L, et al. Aging response of coarse-and fine-grained β titanium alloys[J]. Mater. Sci. Eng., 2005, A405: 296
|
20 |
Gerd L, James C W. Titanium[M]. Germany: Die Deutsche Bibliothek, 2003: 6
|
21 |
Chao Q, Thomas S, Birbilis N, et al. The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel[J]. Mater. Sci. Eng., 2021, A821: 141611
|
22 |
Bertsch K M, de Bellefon G M, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L[J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
|
23 |
Wang Q J, Sun Y L, Shuang Y X, et al. Aging-hardening behavior and phase transition kinetics of a novel β-Ti alloy[J]. Chin. J. Rare Met., 2019, 43: 1103
|
23 |
王庆娟, 孙亚玲, 双翼翔 等. 新型β钛合金的时效机制和相变动力学研究[J]. 稀有金属, 2019, 43: 1103
|
24 |
Guan J, Liu J R, Lei J F, et al. The relationship of heat treatment-microstructures-mechanical properties of the TC18 titanium alloy[J]. Chin. J. Mater. Res., 2009, 23: 77
|
24 |
官 杰, 刘建荣, 雷家峰 等. TC18钛合金的组织和性能与热处理制度的关系[J]. 材料研究学报, 2009, 23: 77
|
25 |
Li Y, Zhang L, Zhu Z W, et al. Influence of heat treatment on microstructure and mechanical properties of a high-strength Zr-Ti alloy[J]. Acta. Metall. Sin., 2014, 50: 19
doi: 10.3724/SP.J.1037.2013.00498
|
25 |
李 烨, 张 龙, 朱正旺 等. 热处理对一种高强Zr-Ti合金组织和力学性能的影响[J]. 金属学报, 2014, 50: 19
|
26 |
Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy[J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
|
27 |
Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys[J]. Mater. Sci. Eng., 1999, A263: 117
|
28 |
Suri S, Viswanathan G B, Neeraj T, et al. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy[J]. Acta Mater., 1999, 47: 1019
doi: 10.1016/S1359-6454(98)00364-4
|
29 |
Wu W H, Xiao D M, Yang Y Q, et al. Analysis on powder adhesion problems in selective laser melting forming process[J]. Hot Work. Technol., 2016, 45(24): 43
|
29 |
吴伟辉, 肖冬明, 杨永强 等. 激光选区熔化成型过程的粉末粘附问题分析[J]. 热加工工艺, 2016, 45(24): 43
|
30 |
Wu W H, Yang Y Q, Mao X, et al. Sidewall precision analysis of metal part formed by selective laser melting[A]. Proceedings of 2015 Optics and Precision Engineering Forum [C]. Changchun: Science and Technology Press, 2015: 164
|
30 |
吴伟辉, 杨永强, 毛 星 等. 激光选区熔化增材制造零件侧壁成型精度分析[A]. 2015光学精密工程论坛论文集 [C]. 长春: 科技出版社, 2015: 164
|
31 |
Pugno N, Ciavarella M, Cornetti P, et al. A generalized Paris' law for fatigue crack growth[J]. J. Mech. Phys. Solids, 2006, 54: 1333
doi: 10.1016/j.jmps.2006.01.007
|
32 |
Li H F. Investigation on fracture toughness and crack growth mechanism of high-strength steels[D]. Hefei: University of Science and Technology of China, 2019
|
32 |
李鹤飞. 高强钢断裂韧性与裂纹扩展机制研究[D]. 合肥: 中国科学技术大学, 2019
|
33 |
Wen M P, Pang H Y, Tang M F, et al. Toughness measurement of explosive based on fracture energy of the stress-strain curve[J]. Chin. J. Energ. Mater., 2015, 23: 351
|
33 |
温茂萍, 庞海燕, 唐明峰 等. 基于应力应变曲线的断裂能参数表征炸药韧性[J]. 含能材料, 2015, 23: 351
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|