Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1003-1012    DOI: 10.11900/0412.1961.2021.00071
  研究论文 本期目录 | 过刊浏览 |
700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响
刘仁慈1(), 王鹏1,2, 曹如心1,2, 倪明杰1,2, 刘冬1, 崔玉友1, 杨锐1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys
LIU Renci1(), WANG Peng1,2, CAO Ruxin1,2, NI Mingjie1,2, LIU Dong1, CUI Yuyou1, YANG Rui1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
Renci LIU, Peng WANG, Ruxin CAO, Mingjie NI, Dong LIU, Yuyou CUI, Rui YANG. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. Acta Metall Sin, 2022, 58(8): 1003-1012.

全文: PDF(3506 KB)   HTML
摘要: 

研究了700℃恒温热暴露对β凝固Ti-43.5Al-4Nb-1Mo-0.5B合金表面形貌与反应层组织的影响。结果表明:含有β0相的β凝固γ-TiAl合金热暴露反应产物、表面形貌和反应界面组织随着时间不断变化,TiO2-Rα-Al2O3、Ti2AlN和Nb2Al等反应产物含量持续增多,初期出现的κ-Al2O3在热暴露200 h后转变为α-Al2O3,而亚稳Ti4O7和TiAl2O5在200 h后出现。不同物相氧化行为差异导致反应界面组织明显不同,高Al含量γ相易局部氧化,形成连续Al2O3反应层,低Al含量β0相易内氧化而形成TiO2弥散分布组织,TiO2颗粒持续长大成连续反应层,其与局部氧化交替作用而形成TiO2-Al2O3交替的层状组织。相比弥散反应层,连续反应层可阻碍O元素向基体扩散,降低TiO2生长速率,因此,γ相表面反应物细小致密,α2相反应物先迅速长大后缓慢生长,而β0相表面反应物不断长大。

关键词 β凝固γ-TiAl合金热暴露表面显微组织    
Abstract

β-solidifying Ti-43.5Al-4Nb-1Mo-0.5B has attracted considerable attention owing to its higher strength and excellent creep resistance at elevated temperature. Indeed, its application temperature is much higher than that of Ti-48Al-2Cr-2Nb. Because γ-TiAl alloys are exposed to air at elevated temperatures for a long time during application, an oxidation layer is formed in the surface. The oxidation layer, which is potentially harmful to the mechanical properties of the crack nucleation sites, was observed near the surface. Concerning the β-solidifying Ti-43.5Al-4Nb-1Mo-0.5B, it has median Nb content and low Al content. Additionally, a considerable β0-phase with lower Al content is retained. To better understand the influence of the composition and microstructure on the oxidation behavior of γ-TiAl alloys, it is necessary to investigate the oxidation behavior and microstructure evolution in the surface of β-solidifying γ-TiAl alloys during thermal exposure. In this study, samples of β-solidifying Ti-43.5Al-4Nb-1Mo-0.5B were obtained by investment casting and thermal exposure at 700°C for different times, and the oxidation behavior and microstructure of different phases in the surface were compared. The results showed that the constituents of the oxidation layer on the surface varied with the exposure time. The volume fractions of TiO2-R, α-Al2O3, Ti2AlN, and Nb2Al increased by increasing the exposure time. Metastable κ-Al2O3 was detected in the sample exposed for a short time, but it was transformed into α-Al2O3 after exposure for 200 h. Moreover, metastable Ti4O7 and TiAl2O5 were detected in samples exposed for 200 and 500 h. The microstructures, morphologies, and heights of oxidations in the surface of a specific phase are different, varying by increasing the exposure time. These variations are related to the different oxidation behaviors during thermal exposure, i.e., the γ-phase experienced selective oxidation after a short time exposure, α2-phase changed from internal oxidation to selective oxidation when the exposure time reached 200 h, while the β0-phase suffered internal oxidation during the entire exposure. The different oxidation behaviors of each specific phase contributed to the different Al contents. Dispersed TiO2 was formed during internal oxidation, and it kept growing during thermal exposure, forming a continual layer at the end. The continual Al2O3 layer was formed during selective oxidation, in which the Ti element was rejected in the reaction interface. When the content produced during the internal oxidation of the Ti element reached a critical value, dispersed TiO2 was formed and kept growing to form the continual layer. The alternating formation of continual Al2O3 and TiO2 layers resulted in the layer structure observed in the surface.

Key wordsβ-solidifying    γ-TiAl alloy    thermal exposure    surface    microstructure
收稿日期: 2021-02-07     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51701209);云南省重大科技专项计划项目(202002AB08001-3)
作者简介: 刘仁慈,男,1983年生,博士
ElementMass fraction / %Atomic fraction / %
Ti59.0650.61
Al28.643.5
Nb9.754.31
Mo2.451.05
B0.140.53
O0.0650.17
N0.020.06
表1  Ti-43.5Al-4Nb-1Mo-0.5B (TNM-0.5B)合金铸件成分检测结果
图1  TNM-0.5B合金铸件初始组织的OM像及背散射电子(BSE)像
PositionSpecific constituteAlTiNbMoB
1Equiaxed β020.6460.9611.866.540
2Equiaxed γ31.2056.0011.101.700
3α2 + γ lamellar27.5559.549.962.950
4Boride8.0643.9113.983.1730.88
表2  TNM-0.5B合金铸件初始组织组成相EDS结果 (mass fraction / %)
图2  700℃空气热暴露不同时间样品表面的XRD谱
图3  热暴露不同时间样品表面的二次电子像
PositionPhaseConstitute
OAlTiNbMo
1Equiaxed β030.9616.9344.116.331.67
2Equiaxed γ21.9922.9947.117.050.85
3γ lamellar24.4720.7546.516.951.33
4α2 lamellar28.6718.2845.356.271.43
5γ lamellar42.3118.3734.294.500.53
6α2 lamellar46.8619.7628.793.820.77
7Equiaxed β051.004.3843.960.660.00
8Equiaxed γ44.4214.3237.003.740.52
表3  样品热暴露表面氧化产物EDS分析结果 (mass fraction / %)
图4  700℃热暴露不同时间样品表面三维轮廓
图5  不同时间热暴露样品表面线性轮廓和物相相对高度
图6  700℃热暴露不同时间样品表面纵切面显微组织的OM像
图7  热暴露样品反应界面显微组织BSE像及元素分布图
图8  热暴露过程中表面反应界面显微组织、成分及形貌演变机理
1 Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
1 杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
2 Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
doi: 10.1080/09603409.2016.1183068
3 Clemens H, Mayer S. Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties [J]. Mater. High Temp., 2016, 33: 560
doi: 10.1080/09603409.2016.1163792
4 Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy [J]. Intermetallics, 2014, 44: 128
doi: 10.1016/j.intermet.2013.09.010
5 Wang X, Liu R C, Cao R X, et al. Effect of cooling rate on boride and room temperature tensile properties of β-solidifying γ-TiAl alloys [J]. Acta Metall. Sin., 2020, 56: 203
5 王 希, 刘仁慈, 曹如心 等. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响 [J]. 金属学报, 2020, 56: 203
6 Liu X F, Liu D, Liu R C, et al. Microstructure and tensile properties of Ti-43.5Al-4Nb-1Mo-0.1B alloy processed by hot canned extrusion [J]. Acta Metall. Sin., 2020, 56: 979
6 刘先锋, 刘 冬, 刘仁慈 等. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能 [J]. 金属学报, 2020, 56: 979
doi: 10.11900/0412.1961.2019.00388
7 Cui Y Y, Xiang H F, Jia Q, et al. Effects of thermal exposure on the tensile and fatigue properties of cast Ti-47Al-2Cr-2Nb-0.15B alloy [J]. Acta Metall. Sin., 2005, 41: 108
7 崔玉友, 项宏福, 贾 清 等. 热暴露对铸造Ti-47Al-2Cr-2Nb-0.15B合金的拉伸和疲劳性能的影响 [J]. 金属学报, 2005, 41: 108
8 Draper S L, Isheim D. Environmental embrittlement of a third generation γ TiAl alloy [J]. Intermetallics, 2012, 22: 77
doi: 10.1016/j.intermet.2011.10.006
9 Wu X H, Huang A, Hu D, et al. Oxidation-induced embrittlement of TiAl alloys [J]. Intermetallics, 2009, 17: 540
doi: 10.1016/j.intermet.2009.01.010
10 Maurice V, Despert G, Zanna S, et al. XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys [J]. Acta Mater., 2007, 55: 3315
doi: 10.1016/j.actamat.2007.01.030
11 Lang C, Schütze M. TEM investigations of the early stages of TiAl oxidation [J]. Oxid. Met., 1996, 46: 255
doi: 10.1007/BF01050799
12 Qu S J, Tang S Q, Feng A H, et al. Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy [J]. Acta Mater., 2018, 148: 300
doi: 10.1016/j.actamat.2018.02.013
13 Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
doi: 10.1016/j.intermet.2010.08.029
14 Shida Y, Anada H. The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air [J]. Oxid. Met., 1996, 45: 197
doi: 10.1007/BF01046826
15 Gil A, Hoven H, Wallura E, et al. The effect of microstructure on the oxidation behaviour of TiAl-based intermetallics [J]. Corr. Sci., 1993, 34: 615
doi: 10.1016/0010-938X(93)90276-M
16 Chen G, Sun Z, Zhou X. Oxidation of intermetallic alloys in Ti-Al-Nb ternary system [J]. Corrosion, 1992, 48: 939
doi: 10.5006/1.3315897
17 Ping F P, Hu Q M, Yang R. Investigation on effects of alloying on oxidation resistance of γ-TiAl by using first principle [J]. Acta Metall. Sin., 2013, 49: 385
doi: 10.3724/SP.J.1037.2012.00694
17 平发平, 胡青苗, 杨 锐. 利用第一原理研究合金化对γ-TiAl抗氧化性能的影响 [J]. 金属学报, 2013, 49: 385
18 Galetz M C, Ulrich A S, al COskayet. Oxidation-induced microstructural changes of the TiAl TNM-B1 alloy after exposure at 900oC in air [J]. Intermetallics, 2020, 123: 106830
doi: 10.1016/j.intermet.2020.106830
19 Lee D B, Kim M H, Yang C W, et al. The oxidation of TiB2 particle-reinforced TiAl intermetallic composites [J]. Oxid. Met., 2001, 56: 215
doi: 10.1023/A:1010368610654
20 Li D X, Zhang G Y, Lu G, et al. Optimizing high-temperature oxidation behaviors of high-Nb-containing TiAl alloys by addition of boron [J]. Corros. Sci., 2020, 177: 108971
doi: 10.1016/j.corsci.2020.108971
21 Wagner C. Formation of composite scales consisting of oxides of different metals [J]. J. Electrochem. Soc., 1956, 103: 627
doi: 10.1149/1.2430176
22 Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloys [M]. Beijing: Chemical Industry Press, 2005: 173
22 Leyens C, Peters M著, 陈振华译. 钛与钛合金 [M]. 北京: 化学工业出版社, 2005: 173
23 Li X L, Hillel R, Teyssandier F, et al. Reactions and phase relations in the Ti-Al-O system [J]. Acta Metall. Mater., 1992, 40: 3149
doi: 10.1016/0956-7151(92)90478-W
24 Pilone D, Felli F, Brotzu A. High temperature oxidation behaviour of TiAl-Cr-Nb-Mo alloys [J]. Intermetallics, 2013, 43: 131
doi: 10.1016/j.intermet.2013.07.023
25 Niu H Z, Chen X J, Chen Y F, et al. Microstructural stability, phase transformation and mechanical properties of a fully-lamellar microstructure of a Mo-modified high-Nb γ-TiAl alloy [J]. Mater. Sci. Eng., 2020, A784: 139313
26 Seifert H J, Kussmaul A, Aldinger F. Phase equilibria and diffusion paths in the Ti-Al-O-N system [J]. J. Alloys Compd., 2001, 317-318: 19
doi: 10.1016/S0925-8388(00)01409-2
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[6] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[7] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[8] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[9] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[10] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[11] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[12] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[13] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[14] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[15] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.