Please wait a minute...
金属学报  2020, Vol. 56 Issue (5): 785-794    DOI: 10.11900/0412.1961.2019.00299
  本期目录 | 过刊浏览 |
温度对碳纳米管增强纳米蜂窝镍力学性能的影响
李源才, 江五贵(), 周宇
南昌航空大学航空制造工程学院 南昌 330063
Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs
LI Yuancai, JIANG Wugui(), ZHOU Yu
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
Yuancai LI, Wugui JIANG, Yu ZHOU. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. Acta Metall Sin, 2020, 56(5): 785-794.

全文: PDF(3638 KB)   HTML
摘要: 

选取含质量分数为5.22‰碳纳米管(CNT)为代表,通过分子动力学(MD)研究了温度对纳米蜂窝镍(NNHC)和CNT增强纳米蜂窝镍(CRNNHC)在径向拉伸、径向压缩、轴向拉伸和轴向压缩下力学性能的影响。结果表明,NNHC和CRNNHC的弹性模量(E)和最终应力(σu)对温度较为敏感,都随温度升高呈近似线性下降。相比于NNHC,不同温度下CNT的添加对CRNNHC径向力学性能的增强效果并不明显,而对其轴向力学性能则起到了良好的增强作用。CRNNHC轴向拉伸与压缩时的弹性模量提升幅值分别为6.4%~10%与9%~12%,最终应力提升幅值分别为1.5%~5.3%与10%~14%。研究表明,不同温度下CRNNHC沿轴向变形的力学性能普遍要优于沿径向变形的力学性能,也预示着轴向变形时CNT被破坏前吸收的能量相对较多。

关键词 纳米蜂窝镍碳纳米管增强纳米蜂窝镍力学性能分子动力学温度效应    
Abstract

Nickel nano-honeycombs (NNHC) would be expected to an ideal anode material for solid oxide fuel cells (SOFC) because of its high surface area and highly ordered pore network. But, the anode material requires excellent mechanical properties to withstand stresses that arise during processing and service at different temperatures. The influence of temperature on the mechanical behaviors under radial (y axis) tension, radial compression, axial (z axis) tension and axial compression, is investigated by molecular dynamics (MD) by taking the carbon nanotubes (CNT)-reinforced NNHC (CRNNHC) composites with the mass fractions of CNT (ωCNT) of 5.22‰ and its corresponding NNHC as the example. The results show that the mechanical properties including elastic modulus(E) and ultimate stress (σu)in NNHC and CRNNHC both decrease approximately linearly with the increase of temperature. Compared to NNHC, the addition of CNT has no obvious effect on the enhancement of radial mechanical properties of CRNNHC under different temperatures, but it results in a good reinforced effect on axial mechanical properties. While the axial tensile and compressive elastic moduli can be increased by 6.4%~10% and 9%~12% respectively, and the ultimate stress can be increased by 1.5%~5.3% and 10%~14% respectively. The study indicates that axial mechanical properties of the CRNNHC are generally superior to their radial mechanical properties, and the energy absorption before the axial deformation is relatively larger due to the existence of CNT.

Key wordsnickel nano-honeycomb (NNHC)    CNT-reinforced NNHC (CRNNHC)    mechanical property    molecular dynamics    temperature effect
收稿日期: 2019-09-10     
ZTFLH:  TB31  
基金资助:国家自然科学基金项目(11772145);国家自然科学基金项目(11372126)
作者简介: 李源才,男,1987年生,硕士生
图1  本工作所用分子动力学(MD)模型
图2  不同温度下NNHC和CRNNHC沿径向拉伸的应力-应变曲线
图3  不同温度下NNHC和CRNNHC沿径向拉伸的力学性能
图4  不同温度下NNHC和CRNNHC沿径向压缩的应力-应变曲线
图5  不同温度下NNHC和CRNNHC沿径向压缩的力学性能
图6  不同温度下NNHC和CRNNHC沿轴向拉伸的应力-应变曲线
图7  温度为900 K时CRNNHC沿轴向拉伸原子分布图
图8  不同温度下NNHC和CRNNHC沿轴向拉伸的力学性能
图9  不同温度下轴向压缩应力-应变曲线
图10  不同温度下NNHC和CRNNHC沿轴向压缩的力学性能
图11  温度为600 K时CRNNHC在径向拉伸、径向压缩、轴向拉伸和轴向压缩变形下的原子分布图
1 Ivers-Tiffée E, Weber A, Herbstritt D. Materials and technologies for SOFC-components [J]. J. Eur. Ceram. Soc., 2001, 21: 1805
2 Xu M, Li T, Yang M, et al. Solid oxide fuel cell interconnect design optimization considering the thermal stresses [J]. Sci. Bull., 2016, 61: 1333
doi: 10.1007/s11434-016-1146-3 pmid: 27635282
3 Radovic M, Lara-Curzio E. Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen [J]. Acta Mater., 2004, 52: 5747
doi: 10.1016/j.actamat.2004.08.023
4 Frandsen H L, Ramos T, Faes A, et al. Optimization of the strength of SOFC anode supports [J]. J. Eur. Ceram. Soc., 2012, 32: 1041
doi: 10.1016/j.jeurceramsoc.2011.11.015
5 Yu J H, Park G W, Lee S, et al. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode [J]. J. Power Sources, 2007, 163: 926
6 Ge X M, Chan S H, Liu Q L, et al. Solid oxide fuel cell anode materials for direct hydrocarbon utilization [J]. Adv. Energy Mater., 2012, 2: 1156
doi: 10.1021/ja206278f pmid: 22011010
7 Halmenschlager C M, Korb M D A, Neagu R, et al. Nanostructured YSZ thin film for application as electrolyte in an electrode supported SOFC [J]. Mater. Sci. Forum, 2012, 727-728: 873
8 Ansar A, Soysal D, Schiller G. Nanostructured functional layers for solid oxide fuel cells [J]. Int. J. Energy Res., 2010, 33: 1191
9 Tsuchiya M, Lai B K, Ramanathan S. Scalable nanostructured membranes for solid-oxide fuel cells [J]. Nat. Nanotechnol., 2011, 6: 282
doi: 10.1038/nnano.2011.43 pmid: 21460827
10 Kang S, Su P C, Park Y I, et al. Thin-film solid oxide fuel cells on porous nickel substrates with multistage nanohole array [J]. J. Electrochem. Soc., 2006, 153: A554
11 Nelson P A, Elliott J M, Attard G S, et al. Mesoporous nickel/nickel oxide—A nanoarchitectured electrode [J]. Chem. Mater., 2002, 14: 524
doi: 10.1021/cm011021a
12 Nelson P A, Owen J R. A High-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes [J]. J. Electrochem. Soc., 2003, 150: A1313
13 Treacy M M J, Ebbesen T W, Gibson J. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678
doi: 10.1038/381678a0
14 Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature, 1996, 382: 54
doi: 10.1038/382054a0
15 Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84: 4613
doi: 10.1103/PhysRevLett.84.4613 pmid: 10990753
16 Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells [J]. J. Power Sources, 2007, 170: 79
doi: 10.1016/j.bioelechem.2019.05.008 pmid: 31158799
17 Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells [J]. Mater. Sci. Eng, 2003, A362: 228
18 Xie X, Hu L B, Pasta M, et al. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells [J]. Nano Lett., 2011, 11: 291
doi: 10.1021/nl103905t pmid: 21158405
19 Peigney A, Laurent C, Flahaut E, et al. Carbon nanotubes in novel ceramic matrix nanocomposites [J]. Ceram. Int., 2000, 26: 677
doi: 10.1038/nmat793 pmid: 12652671
20 Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Appl. Phys. Lett., 2000, 76: 2868
doi: 10.1046/j.1365-2818.2001.00940.x pmid: 11580811
21 Curtin W A, Sheldon B W. CNT-reinforced ceramics and metals [J]. Materialstoday, 2004, 7: 44
22 Song Q S, Aravindaraj G K, Sultana H, et al. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries [J]. Electrochim. Acta, 2007, 53: 1890
23 Jiang J, Liu J P, Zhou W W, et al. CNT/Ni hybrid nanostructured arrays: synjournal and application as high-performance electrode materials for pseudocapacitors [J]. Energy Environ. Sci., 2011, 4: 5000
24 Jang J W, Choi H J, Kwon O H, et al. Densification behavior and electrical properties of carbon nanotube-Ni nanocomposite films for co-fireable microcircuit electrodes [J]. Thin Solid Films, 2018, 660: 754
25 Liu X, Gurel V, Morris D, et al. Bioavailability of nickel in single-wall carbon nanotubes [J]. Adv. Mater., 2007, 19: 2790
26 Chen Y S, Huang J H. Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol [J]. Biosens. Bioelectron., 2010, 26: 207
doi: 10.1016/j.bios.2010.06.016 pmid: 20637593
27 Choi T, Kim S H, Lee C W, et al. Synjournal of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing [J]. Biosens. Bioelectron., 2015, 63: 325
doi: 10.1016/j.bios.2014.07.059 pmid: 25113051
28 Lin T C, Huang B R. Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing [J]. Sens. Actuators, 2012, 162B: 108
29 Esfarjani K, Gorjizadeh N, Nasrollahi Z. Molecular dynamics of single wall carbon nanotube growth on nickel surface [J]. Computat. Mater. Sci., 2006, 36: 117
doi: 10.1166/jnn.2004.063 pmid: 15296231
30 Shibuta Y, Maruyama S. A molecular dynamics study of the effect of a substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes [J]. Chem. Phys. Lett., 2007, 437: 218
doi: 10.1016/j.cplett.2007.02.019
31 Oguri T, Shimamura K, Shibuta Y, et al. Ab initio molecular dynamics simulation of the dissociation of ethanol on a nickel cluster: Understanding the initial stage of metal-catalyzed growth of carbon nanotubes [J]. J. Phys. Chem., 2013, 117C: 9983
32 Fukuhara S, Shimojo F, Shibuta Y. Conformation and catalytic activity of nickel-carbon cluster for ethanol dissociation in carbon nanotube synjournal: Ab initio molecular dynamics simulation [J]. Chem. Phys. Lett., 2017, 679: 164
33 Song H Y, Zha X W. Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites [J]. Comput. Mater. Sci., 2010, 49: 899
34 Song H Y, Zha X W. Mechanical properties of nickel-coated single-walled carbon nanotubes and their embedded gold matrix composites [J]. Phys. Lett., 2010, 374A: 1068
35 Zhou X, Song S Y, Li L, et al. Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes [J]. J. Compos. Mater., 2015, 50: 191
36 Duan K, Li L, Hu Y J, et al. Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights [J]. Physica, 2017, 88E: 259
doi: 10.1111/j.1755-3768.2010.01997.x pmid: 20977690
37 Zhang H F, Yan H L, Jia N, et al. Exploring plastic deformation mechanism of multilayered Cu/Ti composites by using molecular dynamics modeling [J]. Acta Metall. Sin., 2018, 54: 1333
37 张海峰, 闫海乐, 贾 楠等. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究 [J]. 金属学报, 2018, 54: 1333
38 Zhou Y, Jiang W G, Li D S, et al. Study on lightweight and strengthening effect of carbon nanotube in highly ordered nanoporous nickel: A molecular dynamics study [J]. Appl. Sci., 2019, 9: 352
39 Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells [J]. Nat. Mater., 2004, 3: 17
doi: 10.1038/nmat1040 pmid: 14704781
40 Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys. Rev., 1986, 33B: 7983
41 Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. J. Chem. Phys., 2000, 112: 6472
42 Lennard-Jones J E. Cohesion [J]. Proc. Phys. Soc., 1931, 43: 461
43 Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture [J]. Mol. Phys., 2008, 106: 2367
44 Kutana A, Giapis K P. Transient deformation regime in bending of single-walled carbon nanotubes [J]. Phys. Rev. Lett., 2006, 97: 245501
doi: 10.1103/PhysRevLett.97.245501 pmid: 17280296
45 Jiang L Y, Huang Y, Jiang H, et al. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force [J]. J. Mech. Phys. Solids, 2006, 54: 2436
46 Choi B K, Yoon G H, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading [J]. Composites, 2016, 91B: 119
47 Yi L J, Chang T C, Feng X Q, et al. Giant energy absorption capacity of graphene-based carbon honeycombs [J]. Carbon, 2017, 118: 348
48 Zhou Y, Jiang W G, Feng X Q, et al. In-plane compressive behavior of graphene-coated aluminum nano-honeycombs [J]. Comput. Mater. Sci., 2019, 156: 396
49 Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
50 Wen Y H, Zhang Y, Zhu Z Z. Size-dependent effects on equilibrium stress and strain in nickel nanowires [J]. Phys. Rev., 2007, 76B: 125423
51 Rezaei R, Shariati M, Tavakoli-Anbaran H, et al. Mechanical characteristics of CNT-reinforced metallic glass nanocomposites by molecular dynamics simulations [J]. Comput. Mater. Sci., 2016, 119: 19
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.