|
|
纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响 |
李源才, 江五贵( ), 周宇 |
南昌航空大学航空制造工程学院 南昌 330063 |
|
Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites |
LI Yuancai, JIANG Wugui( ), ZHOU Yu |
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China |
引用本文:
李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
Yuancai LI,
Wugui JIANG,
Yu ZHOU.
Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. Acta Metall Sin, 2020, 56(5): 776-784.
1 |
Liu G Y. Molecular dynamics simulation of hole tensile deformation in nanocrystalline copper [J]. J. At. Mol. Phys., 2004, 21(Suppl.): 377
|
1 |
刘光勇. 纳米单晶铜中孔洞拉伸变形的分子动力学模拟 [J]. 原子与分子物理学报, 2004, 21(增刊): 377
|
2 |
Zhang N. Molecular dynamic simulation on mechanical behavior of nano-bicrystal copper under uniaxial tension [D]. Wuhan: Huazhong University of Science and Technology, 2008
|
2 |
张 宁. 纳米双晶铜单向拉伸力学行为的分子动力学模拟 [D]. 武汉: 华中科技大学, 2008
|
3 |
Yang X H, Zhou T, Chen C Y. Effective elastic modulus and atomic stress concentration of single crystal nano-plate with void [J]. Comput. Mater. Sci., 2007, 40: 51
|
4 |
Liu T, Deng Q, Liu Y, et al. Strength analysis of an aero engine blisk [J]. Mech. Res., Appl., 2015, 28(4): 94
|
4 |
刘 涛, 邓 强, 刘 源等. 某型航空发动机整体叶盘强度分析 [J]. 机械研究与应用, 2015, 28(4): 94
|
5 |
Qin D S, Chen B Y, Sun J N. Numerical simulation on the enhanced heat transfer effects of the blisk to the blades and disk in the turbine [J]. Tactical Missile Technol., 2015, (2): 49
|
5 |
秦德胜, 陈宝延, 孙纪宁. 整体叶盘对涡轮叶盘间传热强化的数值研究 [J]. 战术导弹技术, 2015, (2): 49
|
6 |
Peng X J, Zhu W J, Chen K G, et al. Molecular dynamics simulations of void coalescence in monocrystalline copper under loading and unloading [J]. J. Appl. Phys., 2016, 119: 165901
|
7 |
Rui Z Y, Cao H, Luo D C, et al. Effect of hole size on single crystal γ-TiAl alloy crack propagation based on molecular dynamics simulation [J]. Rare Met. Mater. Eng., 2017, 46: 2505
|
7 |
芮执元, 曹 卉, 罗德春等. 单晶γ-TiAl中孔洞尺寸对裂纹扩展影响的分子动力学模拟 [J]. 稀有金属材料与工程, 2017, 46: 2505
|
8 |
Luo D C, Zhang L, Fu R, et al. Molecular dynamics simulation of nano single crystal gamma-TiAl alloy strain rate effect [J]. Rare Met. Mater. Eng., 2018, 47: 853
|
8 |
罗德春, 张 玲, 付蓉等. 纳米单晶γ-TiAl合金应变速率效应分子动力学模拟 [J]. 稀有金属材料与工程, 2018, 47: 853
|
9 |
Shang J, Yang F, Li C, et al. Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: A molecular dynamics simulation [J]. Comput. Mater. Sci., 2018, 148: 200
|
10 |
Zhu P Z, Hu Y Z, Wang H. Atomistic simulations of the effect of a void on nanoindentation response of nickel [J]. Sci. China Phys. Mech. Astron., 2010, 53: 1716
|
11 |
Ito A, Okamoto S. Tensile and shearing properties of vacancy-containing graphene using molecular dynamics simulations [J]. J. Commun. Comput., 2013, 10: 9
|
12 |
Yang B, Zheng B L, Hu X J, et al. Effect of void on nanoindentation process of Ni-based single crystal alloy [J]. Acta Metall. Sin., 2016, 52: 129
|
12 |
杨 彪, 郑百林, 胡兴健等. 空洞对镍基单晶合金纳米压痕过程的影响 [J]. 金属学报, 2016, 52: 129
|
13 |
Guo J X, Wang B, Yang Z Y. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites [J]. Acta Mater. Compos. Sin., 2014, 31: 152
|
13 |
郭俊贤, 王 波, 杨振宇. 石墨烯/Cu复合材料力学性能的分子动力学模拟 [J]. 复合材料学报, 2014, 31: 152
|
14 |
Hua J, Song C, Duan Z R, et al. Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites [J]. Acta Mater. Compos. Sin., 2018, 35: 632
|
14 |
华 军, 宋 郴, 段志荣等. 石墨烯/铜复合材料剪切性能的分子动力学模拟 [J]. 复合材料学报, 2018, 35: 632
|
15 |
Borg U, Niordson C F, Kysar J W. Size effects on void growth in single crystals with distributed voids [J]. Int. J. Plast., 2008, 24: 688
|
16 |
Stewart D, Cheong K S. Molecular dynamics simulations of dislocations and nanocrystals [J]. Curr. Appl. Phys., 2008, 8: 494
|
17 |
Huang M S, Li Z H, Wang C. Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals [J]. Acta Mater., 2007, 55: 1387
|
18 |
Prithivirajan V, Sangid M D. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity [J]. Mater. Des., 2018, 150: 139
|
19 |
Ruestes C J, Bringa E M, Stukowski A, et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal [J]. Scr. Mater., 2013, 68: 817
|
20 |
Horstemeyer M F, Farkas D, Kim S, et al. Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue [J]. Int. J. Fatigue, 2010, 32: 1473
|
21 |
Yuan F P, Wu X L. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression [J]. AIP Adv., 2014, 4: 127109
|
22 |
Cao A J, Wei Y G. Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel [J]. Phys. Rev., 2007, 76B: 024113
|
23 |
Yi L J, Chang T C, Feng X Q, et al. Giant energy absorption capacity of graphene-based carbon honeycombs [J]. Carbon, 2017, 118: 348
|
24 |
Zhou Y, Jiang W G, Feng X Q, et al. In-plane compressive behavior of graphene-coated aluminum nano-honeycombs [J]. Comput. Mater. Sci., 2019, 156: 396
|
25 |
Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
|
26 |
Zhou Y, Jiang W G, Li D S, et al. Study on lightweight and strengthening effect of carbon nanotube in highly ordered nanoporous nickel: A molecular dynamics study [J]. Appl. Sci., 2019, 9: 352
|
27 |
Mishin Y, Farkas D, Mehl M J, et al. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations [J]. Phys. Rev., 1999, 59B: 3393
|
28 |
Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel [J]. Philos. Mag., 1987, 56A: 735
|
29 |
Chang L, Zhou C Y, Wen L L, et al. Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire [J]. Comput. Mater. Sci., 2017, 128: 348
|
30 |
Ma B, Rao Q H, He Y H. Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire [J]. Comput. Mater. Sci., 2016, 117: 40
|
31 |
Shi G J, Wang J G, Hou Z Y, et al. Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire [J]. Mod. Phys. Lett., 2017, 31B: 1750247
|
32 |
Gao A, Mukherjee S, Srivastava I, et al. Atomistic origins of ductility enhancement in metal oxide coated silicon nanowires for Li‐ion battery anodes [J]. Adv. Mater. Interfaces, 2017, 4: 1700920
|
33 |
Cheng Q, Wu H A, Wang Y, et al. Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations [J]. Appl. Phys. Lett., 2009, 95: 021911
doi: 10.1063/1.3183584
|
34 |
Zheng M. Molecular dynamics simulation of tensile mechanical properties and defect behavior of metal-single crystal [D]. Nanjing: Nanjing University of Science and Technology, 2007
|
34 |
郑 茂. 金属单晶拉伸力学性能及缺陷行为的分子动力学模拟 [D]. 南京: 南京理工大学, 2007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|