Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1097-1108    DOI: 10.11900/0412.1961.2023.00257
  综述 本期目录 | 过刊浏览 |
涂层/高温合金界面行为及调控研究进展
宫声凯1,2(), 刘原3, 耿粒伦4, 茹毅1,2, 赵文月1, 裴延玲1, 李树索3
1北京航空航天大学 前沿科学技术创新研究院 北京 100191
2天目山实验室 杭州 311115
3北京航空航天大学 航空发动机学院 北京 100191
4北京航空航天大学 材料科学与工程学院 北京 100191
Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys
GONG Shengkai1,2(), LIU Yuan3, GENG Lilun4, RU Yi1,2, ZHAO Wenyue1, PEI Yanling1, LI Shusuo3
1Frontier Research Institute of Innovative Science and Technology, Beihang University, Beijing 100191, China
2Tianmu Mountain Laboratory, Hangzhou 311115, China
3Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
4School of Materials Science and Engineering, Beihang University, Beijing 100191, China
引用本文:

宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
Shengkai GONG, Yuan LIU, Lilun GENG, Yi RU, Wenyue ZHAO, Yanling PEI, Shusuo LI. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1097-1108.

全文: PDF(866 KB)   HTML
摘要: 

防护涂层技术对于提高涡轮叶片材料抗氧化腐蚀性能、保证涡轮叶片安全服役具有至关重要的作用,然而,防护涂层与高温合金间有本征的物理、化学性能不匹配性,其界面反应会导致界面组织退化,合金与涂层性能下降,成为制约涂层应用的关键因素。本文概述了典型涂层/高温合金界面组织演变与扩散行为及其影响因素,讨论了界面行为对含涂层高温合金组织稳定性和力学性能的影响,从涂层组织成分优化、界面阻扩散层设计和新型界面稳定涂层研发3个方面介绍了涂层/合金界面的调控方法。总结了涂层/高温合金界面相容性的关键特征,并提出未来应在界面对涂层/合金性能的影响规律与机制、调控界面的多手段联用、计算辅助涂层设计等方面开展系统性研究。

关键词 高温合金防护涂层界面扩散组织演变力学性能    
Abstract

With the continuous increase of turbine inlet temperature of advanced aero-engine, the protective coating technology plays a vital role in improving the oxidation and corrosion resistance of turbine blade materials to ensure the safe performance of turbine blades. However, an intrinsic physical and chemical property mismatch exists between protective coating and superalloy. Interfacial reaction leads to the degradation of interfacial microstructure and mechanical properties. It is the key factor to restrict the application of coating. In this paper, the evolution and diffusion behavior of typical coating/superalloy interface microstructure and its influencing factors are summarized. The influence of interfacial behavior on microstructural stability and mechanical properties of superalloys with coatings is also discussed. The control methods of coating/alloy interface are introduced from three aspects, including the optimization of microstructure composition, design of interfacial diffusion-resistant layer, and development of a new type of interfacial stabilizing coating. Furthermore, the key characteristics of the compatibility of the coating/superalloy interface are summarized, which will promote systematic studies on the effect of the interface on the coating/alloy properties, the combination of multiple methods to control the interface, and the computer-aided coating design.

Key wordssuperalloy    protective coating    interfacial diffusion    microstructure evolution    mechanical property
收稿日期: 2023-06-13     
ZTFLH:  TG111.6  
基金资助:国家自然科学基金项目(52101117)
作者简介: 宫声凯,男,1956年生,教授,博士
图1  保温不同时间含涂层合金等效承载面位置示意图
图2  梯度MCrAlY涂层截面形貌
1 Matsuoka Y, Aoki Y, Matsumoto K, et al. The formation of SRZ on a fourth generation single crystal superalloy applied with aluminide coating [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 637
2 Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647
3 Latief F H, Kakehi K. Influence of heat treatment on anisotropic creep behavior of aluminide coating on a Ni-base single crystal superalloy [J]. Mater. Des. (1980-2015), 2013, 52: 134
doi: 10.1016/j.matdes.2013.04.101
4 Rae C M F, Hook M S, Reed R C. The effect of TCP morphology on the development of aluminide coated superalloys [J]. Mater. Sci. Eng., 2005, A396: 231
5 Esakkiraja N, Gupta A, Jayaram V, et al. Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy [J]. Acta Mater., 2020, 195: 35
doi: 10.1016/j.actamat.2020.04.016
6 Dahl K V, Hald J, Horsewell A. Interdiffusion between Ni-based superalloy and MCrAlY coating [J]. Defect Diffus. Forum, 2006, 258-260: 73
doi: 10.4028/www.scientific.net/DDF.258-260
7 Yang L L, Chen M H, Wang J L, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
8 Walston W S, Schaeffer J C, Murphy W H. A new type of microstructural instability in superalloys-SRZ [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 9
9 Wu J J, Jiang X W, Song P, et al. Anisotropy of interface characteristics between NiCoCrAlY coating and a hot corrosion resistant Ni-based single crystal superalloy during thermal exposure at different temperatures [J]. Appl. Surf. Sci., 2020, 532: 147405
doi: 10.1016/j.apsusc.2020.147405
10 Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
doi: 10.1016/j.actamat.2018.08.018
11 Zhang Y, Haynes J A, Pint B A, et al. Martensitic transformation in CVD NiAl and (Ni, Pt)Al bond coatings [J]. Surf. Coat. Technol., 2003, 163-164: 19
doi: 10.1016/S0257-8972(02)00585-6
12 Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
doi: 10.1016/j.pmatsci.2012.08.002
13 Tawancy H M, Mohamed A I, Abbas N M, et al. Effect of superalloy substrate composition on the performance of a thermal barrier coating system [J]. J. Mater. Sci., 2003, 38: 3797
doi: 10.1023/A:1025992502450
14 Reid M, Pomeroy M J, Robinson J S. Microstructural instability in coated single crystal superalloys [J]. J. Mater. Process. Technol., 2004, 153-154: 660
doi: 10.1016/j.jmatprotec.2004.04.132
15 Zhou Y H, Wang L, Wang G, et al. Influence of substrate composition on the oxidation performance of nickel aluminide coating prepared by pack cementation [J]. Corros. Sci., 2016, 110: 284
doi: 10.1016/j.corsci.2016.04.041
16 Leng W, Pillai R, Naumenko D, et al. Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys [J]. Corros. Sci., 2020, 167: 108494
doi: 10.1016/j.corsci.2020.108494
17 Galiullin T, Chyrkin A, Pillai R, et al. Effect of alloying elements in Ni-base substrate material on interdiffusion processes in MCrAlY-coated systems [J]. Surf. Coat. Technol., 2018, 350: 359
doi: 10.1016/j.surfcoat.2018.07.020
18 Yin B, Xie G, Lou L H, et al. Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys [J]. J. Alloys Compd., 2020, 829: 154440
doi: 10.1016/j.jallcom.2020.154440
19 Yuan K, Peng R L, Li X H. A continuous β-NiAl layer forming at the interface of a MCrAlY and CMSX-4 [J]. J. Therm. Spray Technol., 2016, 25: 244
doi: 10.1007/s11666-015-0293-4
20 Murakami H, Sakai T. Anisotropy of secondary reaction zone formation in aluminized Ni-based single-crystal superalloys [J]. Scr. Mater., 2008, 59: 428
doi: 10.1016/j.scriptamat.2008.04.025
21 Hong H U, Yoon J G, Choi B G, et al. On the mechanism of secondary reaction zone formation in a coated nickel-based single-crystal superalloy containing ruthenium [J]. Scr. Mater., 2013, 69: 33
doi: 10.1016/j.scriptamat.2013.03.015
22 Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
doi: 10.1016/j.corsci.2017.04.004
23 Li M H, Hu W Y, Sun X F, et al. Recent research progress in thermal barrier coatings [J]. Mater. Rep., 2005, 19(4): 41
23 李美姮, 胡望宇, 孙晓峰 等. 热障涂层的研究进展与发展趋势 [J]. 材料导报, 2005, 19(4): 41
24 Nicholls J R, Simms N J, Chan W Y, et al. Smart overlay coatings-concept and practice [J]. Surf. Coat. Technol., 2002, 149: 236
doi: 10.1016/S0257-8972(01)01499-2
25 Ma K K, Schoenung J M. Thermodynamic investigation into the equilibrium phases in the NiCoCrAl system at elevated temperatures [J]. Surf. Coat. Technol., 2010, 205: 2273
doi: 10.1016/j.surfcoat.2010.09.009
26 Kvernes I A, Kofstad P. The oxidation behavior of some Ni-Cr-Al alloys at high temperatures [J]. Metall. Trans., 1972, 3: 1511
27 Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys [J]. Corros. Sci., 2015, 95: 143
doi: 10.1016/j.corsci.2015.03.011
28 Chen H, Rushworth A, Hou X, et al. Effects of temperature on the β-phase depletion in MCrAlYs: A modelling and experimental study towards designing new bond coat alloys [J]. Surf. Coat. Technol., 2019, 363: 400
doi: 10.1016/j.surfcoat.2019.02.024
29 Liu Y, Zou M, Su H Z, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
doi: 10.1016/j.surfcoat.2021.127005
30 Pint B A. The role of chemical composition on the oxidation performance of aluminide coatings [J]. Surf. Coat. Technol., 2004, 188-189: 71
doi: 10.1016/j.surfcoat.2004.08.007
31 Zhang Y, Haynes J A, Wright G, et al. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings [J]. Metall. Mater. Trans., 2001, 32A: 1727
32 Pauletti E, d'Oliveira A S C M. Influence of Pt concentration on structure of aluminized coatings on a Ni base superalloy [J]. Surf. Coat. Technol., 2017, 332: 57
doi: 10.1016/j.surfcoat.2017.10.052
33 Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49: 1
doi: 10.1016/0257-8972(91)90022-O
34 Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
doi: 10.1016/j.corsci.2017.08.015
35 Kiruthika P, Makineni S K, Srivastava C, et al. Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys [J]. Acta Mater., 2016, 105: 438
doi: 10.1016/j.actamat.2015.12.014
36 Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050oC [J]. Surf. Coat. Technol., 2004, 176: 272
doi: 10.1016/S0257-8972(03)00767-9
37 Marino K A, Carter E A. The effect of platinum on Al diffusion kinetics in β-NiAl: Implications for thermal barrier coating lifetime [J]. Acta Mater., 2010, 58: 2726
doi: 10.1016/j.actamat.2010.01.008
38 Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
doi: 10.1016/j.corsci.2016.09.014
39 Sakai T, Shibata M, Murakami H, et al. Microstructural investigation of CoNiCrAlY coated Ni-based single crystal superalloy prepared by LPPS [J]. Mater. Trans., 2006, 47: 1665
doi: 10.2320/matertrans.47.1665
40 Kasai K, Murakami H, Kuroda S, et al. Effect of surface treatment and crystal orientation on microstructural changes in aluminized Ni-based single-crystal superalloy [J]. Mater. Trans., 2011, 52: 1768
doi: 10.2320/matertrans.M2010439
41 Okazaki M, Ohtera I, Harada Y. Damage repair in CMSX-4 alloy without fatigue life reduction penalty [J]. Metall. Mater. Trans., 2004, 35A: 535
42 Kim H J, Walter M E. Characterization of the degraded microstructures of a platinum aluminide coating [J]. Mater. Sci. Eng., 2003, A360: 7
43 Kowalewski R, Mughrabi H. Influence of a plasma-sprayed NiCrAlY coating on the low-cycle fatigue behaviour of a directionally solidified nickel-base superalloy [J]. Mater. Sci. Eng., 1998, A247: 295
44 Rahmani K, Nategh S. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80 [J]. Surf. Coat. Technol., 2008, 202: 1385
doi: 10.1016/j.surfcoat.2007.06.041
45 Zhang B, Lu X, Liu D L, et al. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy [J]. Mater. Sci. Eng., 2012, A551: 149
46 Meng J, Jin T, Sun X F, et al. Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2010, A527: 6119
47 Xie G, Wang L, Zhang J, et al. Influence of recrystallization on the high-temperature properties of a directionally solidified Ni-base superalloy [J]. Metall. Mater. Trans., 2008, 39A: 206
48 Zhang B, Cao X G, Liu C K. Review on inhibition methods of recrystallization of single crystal superalloys [J]. Failure Anal. Prev., 2013, 8: 191
48 张 兵, 曹雪刚, 刘昌奎. 单晶高温合金再结晶的抑制方法研究进展 [J]. 失效分析与预防, 2013, 8: 191
49 Wang Q M, Tang Y J, Zhang J, et al. Recrystallization in NiCoCrAlY coated DS nickel base superalloys during thermal aging [J]. Mater. Sci. Forum, 2007, 539-543: 1092
doi: 10.4028/www.scientific.net/MSF.539-543
50 Wang K, Xu Z H, Zhen Z, et al. Effect of grit blasting on the recrystallization and elemental diffusion behaviors of single crystal superalloy [J]. Vacuum, 2020, 57(3): 25
50 王 凯, 许振华, 甄 真 等. 涂层前处理对单晶合金再结晶及元素扩散行为的影响 [J]. 真空, 2020, 57(3): 25
51 Liang X H, Zhou K S, Liu M, et al. Recrystallization on interface between NiCoCrAlYTa coating and nickel-based super-alloy [J]. Rare Met. Mater. Eng., 2009, 38: 545
51 梁兴华, 周克崧, 刘 敏 等. NiCoCrAlYTa涂层/镍基单晶高温合金界面再结晶 [J]. 稀有金属材料与工程, 2009, 38: 545
52 Wen J, Sun J Y, Du B X, et al. The interfacial stability of single crystal superalloy affected by the phase structure of the Ni-Al coating [J]. Scr. Mater., 2023, 227: 115297
doi: 10.1016/j.scriptamat.2023.115297
53 Rae C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys [J]. Acta Mater., 2001, 49: 4113
doi: 10.1016/S1359-6454(01)00265-8
54 Simonetti M, Caron P. Role and behaviour of μ phase during deformation of a nickel-based single crystal superalloy [J]. Mater. Sci. Eng., 1998, A254: 1
55 Chen Q Z, Jones C N, Knowles D M. Effect of alloying chemistry on MC carbide morphology in modified RR2072 and RR2086 SX superalloys [J]. Scr. Mater., 2002, 47: 669
doi: 10.1016/S1359-6462(02)00266-X
56 Bressers J, Arrell D J, Ostolaza K, et al. Effect of an aluminide coating on precipitate rafting in superalloys [J]. Mater. Sci. Eng., 1996, A220: 147
57 Gong X Y, Peng H, Ma Y, et al. Microstructure evolution of an EB-PVD NiAl coating and its underlying single crystal superalloy substrate [J]. J. Alloys Compd., 2016, 672: 36
doi: 10.1016/j.jallcom.2016.02.115
58 Wang Q M, Li H, Guo M H, et al. Thermal shock cycling behavior of NiCoCrAlYSiB coatings on Ni-base superalloys: II. Microstructure evolution [J]. Mater. Sci. Eng., 2005, A406: 350
59 Alam Z, Satyanarayana D V V, Chatterjee D, et al. Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy [J]. Mater. Sci. Eng., 2012, A536: 14
60 Alam Z, Hazari N, Varma V K, et al. Effect of cyclic oxidation exposure on tensile properties of a Pt-aluminide bond-coated Ni-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4064
61 Liu L, He J, Wu Y T, et al. Investigation on the tensile properties of PtAl and PtReAl coated Ni3Al-based single crystal superalloy [J]. Mater. Sci. Eng., 2023, A867: 144750
62 Parlikar C, Satyanarayana D V V, Chatterjee D, et al. Effect of Pt–aluminide bond coat on tensile and creep behavior of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2015, A639: 575
63 Veys J M, Mevrel R. Influence of protective coatings on the mechanical properties of CMSX-2 and Cotac 784 [J]. Mater. Sci. Eng., 1987, 88: 253
doi: 10.1016/0025-5416(87)90093-0
64 Wu X M, Li J P, Cai Y, et al. Effect of NiCrAlYSi coating on mechanical properties of DZ125 alloy [J]. Equip. Environ. Eng., 2009, 6(5): 4
64 吴小梅, 李建平, 蔡 妍 等. NiCrAlYSi涂层对DZ125合金力学性能的影响 [J]. 装备环境工程, 2009, 6(5): 4
65 Xiao C B, Han Y F, Song J X, et al. Effect of NiCoCrAlYHf overlay coating on performance of Ni3Al-based alloy IC6A [J]. Surf. Coat. Technol., 2006, 200: 3095
doi: 10.1016/j.surfcoat.2005.08.003
66 Texier D, Monceau D, Hervier Z, et al. Effect of interdiffusion on mechanical and thermal expansion properties at high temperature of a MCrAlY coated Ni-based superalloy [J]. Surf. Coat. Technol., 2016, 307: 81
doi: 10.1016/j.surfcoat.2016.08.059
67 Texier D, Andrieu E, Selezneff S, et al. High temperature tensile properties of β-γ-γ'-MCrAlY and β-Ni(Al,Pt) bond-coatings and interdiffusion zone with Ni-based single crystal superalloys [A]. ECI Thermal Barrier Coatings V [C]. Irsee: ESI, 2018
68 Alam Z, Chatterjee D, Kamat S V, et al. Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method [J]. Mater. Sci. Eng., 2010, A527: 7147
69 Parlikar C, Alam Z, Chatterjee D, et al. Oxidation and concomitant effects on the microstructure and high temperature tensile properties of a DS Ni-base superalloy applied with different thicknesses of Pt-aluminide (PtAl) bond coat [J]. Surf. Coat. Technol., 2019, 373: 25
doi: 10.1016/j.surfcoat.2019.05.060
70 Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys [J]. J. Mater. Sci., 1999, 34: 3957
doi: 10.1023/A:1004643311001
71 Latief F H, Kakehi K, Murakami H. Anisotropic creep behavior of aluminized Ni-based single crystal superalloy TMS-75 [J]. Mater. Sci. Eng., 2013, A567: 65
72 Narita T. A view of compatible heat-resistant alloy and coating systems at high-temperatures [J]. AIP Conf. Proc., 2009, 1169: 63
73 Liu Y, Ru Y, Zhang H, et al. Coating-assisted deterioration mechanism of creep resistance at a nickel-based single-crystal superalloy [J]. Surf. Coat. Technol., 2021, 406: 126668
doi: 10.1016/j.surfcoat.2020.126668
74 Hüttner R, Gabel J, Glatzel U, et al. First creep results on thin-walled single-crystal superalloys [J]. Mater. Sci. Eng., 2009, A510-511: 307
75 Brunner M, Bensch M, Völkl R, et al. Thickness influence on creep properties for Ni-based superalloy M247LC SX [J]. Mater. Sci. Eng., 2012, A550: 254
76 Liu Y, Zhou H, Wu M M, et al. Coating-related deterioration mechanism of creep performance at a thermal exposed single crystal Ni-base superalloy [J]. Mater. Charact., 2022, 187: 111839
doi: 10.1016/j.matchar.2022.111839
77 Norton F H. The Creep of Steel at High Temperatures [M]. New York: McGraw-Hill Book Company, 1929: 70
78 Tian H, He L M, Mu R D. Effect of thermal barrier coatings on high cycle fatigue properties of DD6 single crystal superalloy [J]. Equip. Environ. Eng., 2019, 16(1): 41
78 田 贺, 何利民, 牟仁德. 热障涂层对DD6单晶高温合金高周疲劳性能的影响 [J]. 装备环境工程, 2019, 16(1): 41
79 Totemeier T C, King J E. Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part I [J]. Metall. Mater. Trans., 1996, 27A: 353
80 Liu Y, Qi H Y, Song J N, et al. Low-cycle fatigue of MCrAlY-coated superalloys: A fracture mechanics-based analysis [J]. Mater. Sci. Technol., 2021, 37: 151
doi: 10.1080/02670836.2020.1870265
81 Geng L L, Zhao W Y, Ru Y, et al. Tailoring coating composition for the associated microstructural stability of a single-crystal superalloy: An experimental and simulation study [J]. Corros. Sci., 2023, 211: 110916
doi: 10.1016/j.corsci.2022.110916
82 He J, Peng H, Gong S K, et al. Synergistic effect of reactive element co-doping in two-phase (γ' + β) Ni-Al alloys [J]. Corros. Sci., 2017, 120: 130
doi: 10.1016/j.corsci.2017.03.007
83 He J, Zhang Z, Peng H, et al. The role of Dy and Hf doping on oxidation behavior of two-phase (γ′ + β) Ni-Al alloys [J]. Corros. Sci., 2015, 98: 699
doi: 10.1016/j.corsci.2015.06.016
84 Wang Q M, Wu Y N, Guo M H, et al. Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers [J]. Surf. Coat. Technol., 2005, 197: 68
doi: 10.1016/j.surfcoat.2004.09.022
85 Guo C A, Wang W, Cheng Y X, et al. Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal René N5 superalloy [J]. Corros. Sci., 2015, 94: 122
doi: 10.1016/j.corsci.2015.01.048
86 Guo H B, Cui Y J, Hui P, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy [J]. Corros. Sci., 2010, 52: 1440
doi: 10.1016/j.corsci.2010.01.009
87 Lou H Y, Wang F H. Effective of Ta, Ti and TiN barriers on diffusion and oxidation kinetics of sputtered CoCrAlY coatings [J]. Vacuum, 1992, 43: 757
doi: 10.1016/0042-207X(92)90127-I
88 Narita T, Thosin K Z, Fengqun L, et al. Development of Re-based diffusion barrier coatings on nickel based superalloys [J]. Mater. Corros., 2005, 56: 923
doi: 10.1002/(ISSN)1521-4176
89 Li J C, Wei L L, He J, et al. The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy [J]. J. Mater. Sci. Technol., 2020, 58: 63
doi: 10.1016/j.jmst.2020.03.054
90 Wu F, Murakami H, Suzuki A. Development of an iridium-tantalum modified aluminide coating as a diffusion barrier on nickel-base single crystal superalloy TMS-75 [J]. Surf. Coat. Technol., 2003, 168: 62
doi: 10.1016/S0257-8972(03)00009-4
91 Suzuki A, Wu F, Murakami H, et al. High temperature characteristics of Ir-Ta coated and aluminized Ni-base single crystal superalloys [J]. Sci. Technol. Adv. Mater., 2004, 5: 555
doi: 10.1016/j.stam.2004.03.004
92 Haynes J A, Zhang Y, Cooley K M, et al. High-temperature diffusion barriers for protective coatings [J]. Surf. Coat. Technol., 2004, 188-189: 153
doi: 10.1016/j.surfcoat.2004.08.066
93 Zhang Z, Bai B, Peng H, et al. Effect of Ru on interdiffusion dynamics of β-NiAl/DD6 system: A combined experimental and first-principles studies [J]. Mater. Des., 2015, 88: 667
doi: 10.1016/j.matdes.2015.09.041
94 Tan X P, Liu J L, Jin T, et al. Effect of Ru additions on very high temperature creep properties of a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2013, A580: 21
95 Wang Y, Guo H B, Peng H, et al. Diffusion barrier behaviors of (Ru, Ni)Al/NiAl coatings on Ni-based superalloy substrate [J]. Intermetallics, 2011, 19: 191
doi: 10.1016/j.intermet.2010.08.016
96 Wang D, Peng H, Gong S K, et al. NiAlHf/Ru: Promising bond coat materials in thermal barrier coatings for advanced single crystal superalloys [J]. Corros. Sci., 2014, 78: 304
doi: 10.1016/j.corsci.2013.10.013
97 Bai Z M, Li D Q, Peng H, et al. Suppressing the formation of SRZ in a Ni-based single crystal superalloy by RuNiAl diffusion barrier [J]. Prog. Nat. Sci.: Mater. Int., 2012, 22: 146
doi: 10.1016/j.pnsc.2012.03.007
98 Matsuoka Y, Chikugo K, Suzuki T, et al. Isothermal oxidation behavior of ru modified aluminide coating on a fourth generation single crystal superalloy [J]. Mater. Sci. Forum, 2006, 512: 111
doi: 10.4028/www.scientific.net/MSF.512
99 Tryon B, Murphy K S, Yang J Y, et al. Hybrid intermetallic Ru/Pt-modified bond coatings for thermal barrier systems [J]. Surf. Coat. Technol., 2007, 202: 349
doi: 10.1016/j.surfcoat.2007.05.086
100 Song Y X, Murakami H, Zhou C G. Cyclic-oxidation behavior of multilayered Pt/Ru-modified aluminide coating [J]. J. Mater. Sci. Technol., 2011, 27: 280
101 Kawagishi K, Harada H, Sato A, et al. EQ coating: A new concept for SRZ-free coating systems [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 761
102 Wang F, Tian X, Li Q, et al. Oxidation and hot corrosion behavior of sputtered nanocrystalline coating of superalloy K52 [J]. Thin Solid Films, 2008, 516: 5740
doi: 10.1016/j.tsf.2007.07.131
103 Liu C, Chen Y, Eggeman A S, et al. Pt effect on early stage oxidation behaviour of Pt-diffused γ-Ni/γ'-Ni3Al coatings [J]. Acta Mater., 2020, 189: 232
doi: 10.1016/j.actamat.2020.03.013
104 Haynes J A, Pint B A, Zhang Y, et al. The effect of Pt content on γ-γ′ NiPtAl coatings [J]. Surf. Coat. Technol., 2008, 203: 413
doi: 10.1016/j.surfcoat.2008.08.063
105 Sokol M, Wang J, Keshavan H, et al. Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based superalloy [J]. J. Eur. Ceram. Soc., 2019, 39: 878
doi: 10.1016/j.jeurceramsoc.2018.10.019
106 Li J M, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193: 108776
doi: 10.1016/j.matdes.2020.108776
107 Xu Z Z, Zhang P, Wang W, et al. AlCoCrNiMo high-entropy alloy as diffusion barrier between NiAlHf coating and Ni-based single crystal superalloy [J]. Surf. Coat. Technol., 2021, 414: 127101
doi: 10.1016/j.surfcoat.2021.127101
108 Cai Y C, Zhu L S, Cui Y, et al. High-temperature oxidation behavior of FeCoCrNiAl x high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 126552
doi: 10.1088/2053-1591/ab562d
109 Yang T F, Xia S Q, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of Al x CoCrFeNi High-entropy alloy [J]. Mater. Sci. Eng., 2015, A648: 15
110 Bao Z B, Wang Q M, Li W Z, et al. Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy [J]. Corros. Sci., 2009, 51: 860
doi: 10.1016/j.corsci.2009.01.003
111 Bababdani S M, Nogorani F S. Overaluminizing of a CoNiCrAlY coating by inward and outward diffusion treatments [J]. Metall. Mater. Trans., 2014, 45A: 2116
112 Kang J, Liu Y, Geng L L, et al. Microstructure and performance properties of 1200oC-servicing gradiently aluminized NiCrAlYSi coating for single-crystal nickel-based superalloy [J]. J. Alloys Compd., 2022, 924: 166619
doi: 10.1016/j.jallcom.2022.166619
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[8] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[9] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[11] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[14] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[15] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.