|
|
涂层/高温合金界面行为及调控研究进展 |
宫声凯1,2( ), 刘原3, 耿粒伦4, 茹毅1,2, 赵文月1, 裴延玲1, 李树索3 |
1北京航空航天大学 前沿科学技术创新研究院 北京 100191 2天目山实验室 杭州 311115 3北京航空航天大学 航空发动机学院 北京 100191 4北京航空航天大学 材料科学与工程学院 北京 100191 |
|
Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys |
GONG Shengkai1,2( ), LIU Yuan3, GENG Lilun4, RU Yi1,2, ZHAO Wenyue1, PEI Yanling1, LI Shusuo3 |
1Frontier Research Institute of Innovative Science and Technology, Beihang University, Beijing 100191, China 2Tianmu Mountain Laboratory, Hangzhou 311115, China 3Research Institute of Aero-Engine, Beihang University, Beijing 100191, China 4School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
引用本文:
宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
Shengkai GONG,
Yuan LIU,
Lilun GENG,
Yi RU,
Wenyue ZHAO,
Yanling PEI,
Shusuo LI.
Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. Acta Metall Sin, 2023, 59(9): 1097-1108.
1 |
Matsuoka Y, Aoki Y, Matsumoto K, et al. The formation of SRZ on a fourth generation single crystal superalloy applied with aluminide coating [A]. Superalloys 2004 [C]. Warrendale, PA: TMS, 2004: 637
|
2 |
Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647
|
3 |
Latief F H, Kakehi K. Influence of heat treatment on anisotropic creep behavior of aluminide coating on a Ni-base single crystal superalloy [J]. Mater. Des. (1980-2015), 2013, 52: 134
doi: 10.1016/j.matdes.2013.04.101
|
4 |
Rae C M F, Hook M S, Reed R C. The effect of TCP morphology on the development of aluminide coated superalloys [J]. Mater. Sci. Eng., 2005, A396: 231
|
5 |
Esakkiraja N, Gupta A, Jayaram V, et al. Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy [J]. Acta Mater., 2020, 195: 35
doi: 10.1016/j.actamat.2020.04.016
|
6 |
Dahl K V, Hald J, Horsewell A. Interdiffusion between Ni-based superalloy and MCrAlY coating [J]. Defect Diffus. Forum, 2006, 258-260: 73
doi: 10.4028/www.scientific.net/DDF.258-260
|
7 |
Yang L L, Chen M H, Wang J L, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
|
8 |
Walston W S, Schaeffer J C, Murphy W H. A new type of microstructural instability in superalloys-SRZ [A]. Superalloys 1996 [C]. Warrendale, PA: TMS, 1996: 9
|
9 |
Wu J J, Jiang X W, Song P, et al. Anisotropy of interface characteristics between NiCoCrAlY coating and a hot corrosion resistant Ni-based single crystal superalloy during thermal exposure at different temperatures [J]. Appl. Surf. Sci., 2020, 532: 147405
doi: 10.1016/j.apsusc.2020.147405
|
10 |
Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
doi: 10.1016/j.actamat.2018.08.018
|
11 |
Zhang Y, Haynes J A, Pint B A, et al. Martensitic transformation in CVD NiAl and (Ni, Pt)Al bond coatings [J]. Surf. Coat. Technol., 2003, 163-164: 19
doi: 10.1016/S0257-8972(02)00585-6
|
12 |
Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
doi: 10.1016/j.pmatsci.2012.08.002
|
13 |
Tawancy H M, Mohamed A I, Abbas N M, et al. Effect of superalloy substrate composition on the performance of a thermal barrier coating system [J]. J. Mater. Sci., 2003, 38: 3797
doi: 10.1023/A:1025992502450
|
14 |
Reid M, Pomeroy M J, Robinson J S. Microstructural instability in coated single crystal superalloys [J]. J. Mater. Process. Technol., 2004, 153-154: 660
doi: 10.1016/j.jmatprotec.2004.04.132
|
15 |
Zhou Y H, Wang L, Wang G, et al. Influence of substrate composition on the oxidation performance of nickel aluminide coating prepared by pack cementation [J]. Corros. Sci., 2016, 110: 284
doi: 10.1016/j.corsci.2016.04.041
|
16 |
Leng W, Pillai R, Naumenko D, et al. Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys [J]. Corros. Sci., 2020, 167: 108494
doi: 10.1016/j.corsci.2020.108494
|
17 |
Galiullin T, Chyrkin A, Pillai R, et al. Effect of alloying elements in Ni-base substrate material on interdiffusion processes in MCrAlY-coated systems [J]. Surf. Coat. Technol., 2018, 350: 359
doi: 10.1016/j.surfcoat.2018.07.020
|
18 |
Yin B, Xie G, Lou L H, et al. Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys [J]. J. Alloys Compd., 2020, 829: 154440
doi: 10.1016/j.jallcom.2020.154440
|
19 |
Yuan K, Peng R L, Li X H. A continuous β-NiAl layer forming at the interface of a MCrAlY and CMSX-4 [J]. J. Therm. Spray Technol., 2016, 25: 244
doi: 10.1007/s11666-015-0293-4
|
20 |
Murakami H, Sakai T. Anisotropy of secondary reaction zone formation in aluminized Ni-based single-crystal superalloys [J]. Scr. Mater., 2008, 59: 428
doi: 10.1016/j.scriptamat.2008.04.025
|
21 |
Hong H U, Yoon J G, Choi B G, et al. On the mechanism of secondary reaction zone formation in a coated nickel-based single-crystal superalloy containing ruthenium [J]. Scr. Mater., 2013, 69: 33
doi: 10.1016/j.scriptamat.2013.03.015
|
22 |
Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
doi: 10.1016/j.corsci.2017.04.004
|
23 |
Li M H, Hu W Y, Sun X F, et al. Recent research progress in thermal barrier coatings [J]. Mater. Rep., 2005, 19(4): 41
|
23 |
李美姮, 胡望宇, 孙晓峰 等. 热障涂层的研究进展与发展趋势 [J]. 材料导报, 2005, 19(4): 41
|
24 |
Nicholls J R, Simms N J, Chan W Y, et al. Smart overlay coatings-concept and practice [J]. Surf. Coat. Technol., 2002, 149: 236
doi: 10.1016/S0257-8972(01)01499-2
|
25 |
Ma K K, Schoenung J M. Thermodynamic investigation into the equilibrium phases in the NiCoCrAl system at elevated temperatures [J]. Surf. Coat. Technol., 2010, 205: 2273
doi: 10.1016/j.surfcoat.2010.09.009
|
26 |
Kvernes I A, Kofstad P. The oxidation behavior of some Ni-Cr-Al alloys at high temperatures [J]. Metall. Trans., 1972, 3: 1511
|
27 |
Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys [J]. Corros. Sci., 2015, 95: 143
doi: 10.1016/j.corsci.2015.03.011
|
28 |
Chen H, Rushworth A, Hou X, et al. Effects of temperature on the β-phase depletion in MCrAlYs: A modelling and experimental study towards designing new bond coat alloys [J]. Surf. Coat. Technol., 2019, 363: 400
doi: 10.1016/j.surfcoat.2019.02.024
|
29 |
Liu Y, Zou M, Su H Z, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
doi: 10.1016/j.surfcoat.2021.127005
|
30 |
Pint B A. The role of chemical composition on the oxidation performance of aluminide coatings [J]. Surf. Coat. Technol., 2004, 188-189: 71
doi: 10.1016/j.surfcoat.2004.08.007
|
31 |
Zhang Y, Haynes J A, Wright G, et al. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings [J]. Metall. Mater. Trans., 2001, 32A: 1727
|
32 |
Pauletti E, d'Oliveira A S C M. Influence of Pt concentration on structure of aluminized coatings on a Ni base superalloy [J]. Surf. Coat. Technol., 2017, 332: 57
doi: 10.1016/j.surfcoat.2017.10.052
|
33 |
Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49: 1
doi: 10.1016/0257-8972(91)90022-O
|
34 |
Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
doi: 10.1016/j.corsci.2017.08.015
|
35 |
Kiruthika P, Makineni S K, Srivastava C, et al. Growth mechanism of the interdiffusion zone between platinum modified bond coats and single crystal superalloys [J]. Acta Mater., 2016, 105: 438
doi: 10.1016/j.actamat.2015.12.014
|
36 |
Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050oC [J]. Surf. Coat. Technol., 2004, 176: 272
doi: 10.1016/S0257-8972(03)00767-9
|
37 |
Marino K A, Carter E A. The effect of platinum on Al diffusion kinetics in β-NiAl: Implications for thermal barrier coating lifetime [J]. Acta Mater., 2010, 58: 2726
doi: 10.1016/j.actamat.2010.01.008
|
38 |
Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
doi: 10.1016/j.corsci.2016.09.014
|
39 |
Sakai T, Shibata M, Murakami H, et al. Microstructural investigation of CoNiCrAlY coated Ni-based single crystal superalloy prepared by LPPS [J]. Mater. Trans., 2006, 47: 1665
doi: 10.2320/matertrans.47.1665
|
40 |
Kasai K, Murakami H, Kuroda S, et al. Effect of surface treatment and crystal orientation on microstructural changes in aluminized Ni-based single-crystal superalloy [J]. Mater. Trans., 2011, 52: 1768
doi: 10.2320/matertrans.M2010439
|
41 |
Okazaki M, Ohtera I, Harada Y. Damage repair in CMSX-4 alloy without fatigue life reduction penalty [J]. Metall. Mater. Trans., 2004, 35A: 535
|
42 |
Kim H J, Walter M E. Characterization of the degraded microstructures of a platinum aluminide coating [J]. Mater. Sci. Eng., 2003, A360: 7
|
43 |
Kowalewski R, Mughrabi H. Influence of a plasma-sprayed NiCrAlY coating on the low-cycle fatigue behaviour of a directionally solidified nickel-base superalloy [J]. Mater. Sci. Eng., 1998, A247: 295
|
44 |
Rahmani K, Nategh S. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80 [J]. Surf. Coat. Technol., 2008, 202: 1385
doi: 10.1016/j.surfcoat.2007.06.041
|
45 |
Zhang B, Lu X, Liu D L, et al. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy [J]. Mater. Sci. Eng., 2012, A551: 149
|
46 |
Meng J, Jin T, Sun X F, et al. Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2010, A527: 6119
|
47 |
Xie G, Wang L, Zhang J, et al. Influence of recrystallization on the high-temperature properties of a directionally solidified Ni-base superalloy [J]. Metall. Mater. Trans., 2008, 39A: 206
|
48 |
Zhang B, Cao X G, Liu C K. Review on inhibition methods of recrystallization of single crystal superalloys [J]. Failure Anal. Prev., 2013, 8: 191
|
48 |
张 兵, 曹雪刚, 刘昌奎. 单晶高温合金再结晶的抑制方法研究进展 [J]. 失效分析与预防, 2013, 8: 191
|
49 |
Wang Q M, Tang Y J, Zhang J, et al. Recrystallization in NiCoCrAlY coated DS nickel base superalloys during thermal aging [J]. Mater. Sci. Forum, 2007, 539-543: 1092
doi: 10.4028/www.scientific.net/MSF.539-543
|
50 |
Wang K, Xu Z H, Zhen Z, et al. Effect of grit blasting on the recrystallization and elemental diffusion behaviors of single crystal superalloy [J]. Vacuum, 2020, 57(3): 25
|
50 |
王 凯, 许振华, 甄 真 等. 涂层前处理对单晶合金再结晶及元素扩散行为的影响 [J]. 真空, 2020, 57(3): 25
|
51 |
Liang X H, Zhou K S, Liu M, et al. Recrystallization on interface between NiCoCrAlYTa coating and nickel-based super-alloy [J]. Rare Met. Mater. Eng., 2009, 38: 545
|
51 |
梁兴华, 周克崧, 刘 敏 等. NiCoCrAlYTa涂层/镍基单晶高温合金界面再结晶 [J]. 稀有金属材料与工程, 2009, 38: 545
|
52 |
Wen J, Sun J Y, Du B X, et al. The interfacial stability of single crystal superalloy affected by the phase structure of the Ni-Al coating [J]. Scr. Mater., 2023, 227: 115297
doi: 10.1016/j.scriptamat.2023.115297
|
53 |
Rae C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys [J]. Acta Mater., 2001, 49: 4113
doi: 10.1016/S1359-6454(01)00265-8
|
54 |
Simonetti M, Caron P. Role and behaviour of μ phase during deformation of a nickel-based single crystal superalloy [J]. Mater. Sci. Eng., 1998, A254: 1
|
55 |
Chen Q Z, Jones C N, Knowles D M. Effect of alloying chemistry on MC carbide morphology in modified RR2072 and RR2086 SX superalloys [J]. Scr. Mater., 2002, 47: 669
doi: 10.1016/S1359-6462(02)00266-X
|
56 |
Bressers J, Arrell D J, Ostolaza K, et al. Effect of an aluminide coating on precipitate rafting in superalloys [J]. Mater. Sci. Eng., 1996, A220: 147
|
57 |
Gong X Y, Peng H, Ma Y, et al. Microstructure evolution of an EB-PVD NiAl coating and its underlying single crystal superalloy substrate [J]. J. Alloys Compd., 2016, 672: 36
doi: 10.1016/j.jallcom.2016.02.115
|
58 |
Wang Q M, Li H, Guo M H, et al. Thermal shock cycling behavior of NiCoCrAlYSiB coatings on Ni-base superalloys: II. Microstructure evolution [J]. Mater. Sci. Eng., 2005, A406: 350
|
59 |
Alam Z, Satyanarayana D V V, Chatterjee D, et al. Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy [J]. Mater. Sci. Eng., 2012, A536: 14
|
60 |
Alam Z, Hazari N, Varma V K, et al. Effect of cyclic oxidation exposure on tensile properties of a Pt-aluminide bond-coated Ni-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4064
|
61 |
Liu L, He J, Wu Y T, et al. Investigation on the tensile properties of PtAl and PtReAl coated Ni3Al-based single crystal superalloy [J]. Mater. Sci. Eng., 2023, A867: 144750
|
62 |
Parlikar C, Satyanarayana D V V, Chatterjee D, et al. Effect of Pt–aluminide bond coat on tensile and creep behavior of a nickel-base single crystal superalloy [J]. Mater. Sci. Eng., 2015, A639: 575
|
63 |
Veys J M, Mevrel R. Influence of protective coatings on the mechanical properties of CMSX-2 and Cotac 784 [J]. Mater. Sci. Eng., 1987, 88: 253
doi: 10.1016/0025-5416(87)90093-0
|
64 |
Wu X M, Li J P, Cai Y, et al. Effect of NiCrAlYSi coating on mechanical properties of DZ125 alloy [J]. Equip. Environ. Eng., 2009, 6(5): 4
|
64 |
吴小梅, 李建平, 蔡 妍 等. NiCrAlYSi涂层对DZ125合金力学性能的影响 [J]. 装备环境工程, 2009, 6(5): 4
|
65 |
Xiao C B, Han Y F, Song J X, et al. Effect of NiCoCrAlYHf overlay coating on performance of Ni3Al-based alloy IC6A [J]. Surf. Coat. Technol., 2006, 200: 3095
doi: 10.1016/j.surfcoat.2005.08.003
|
66 |
Texier D, Monceau D, Hervier Z, et al. Effect of interdiffusion on mechanical and thermal expansion properties at high temperature of a MCrAlY coated Ni-based superalloy [J]. Surf. Coat. Technol., 2016, 307: 81
doi: 10.1016/j.surfcoat.2016.08.059
|
67 |
Texier D, Andrieu E, Selezneff S, et al. High temperature tensile properties of β-γ-γ'-MCrAlY and β-Ni(Al,Pt) bond-coatings and interdiffusion zone with Ni-based single crystal superalloys [A]. ECI Thermal Barrier Coatings V [C]. Irsee: ESI, 2018
|
68 |
Alam Z, Chatterjee D, Kamat S V, et al. Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method [J]. Mater. Sci. Eng., 2010, A527: 7147
|
69 |
Parlikar C, Alam Z, Chatterjee D, et al. Oxidation and concomitant effects on the microstructure and high temperature tensile properties of a DS Ni-base superalloy applied with different thicknesses of Pt-aluminide (PtAl) bond coat [J]. Surf. Coat. Technol., 2019, 373: 25
doi: 10.1016/j.surfcoat.2019.05.060
|
70 |
Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys [J]. J. Mater. Sci., 1999, 34: 3957
doi: 10.1023/A:1004643311001
|
71 |
Latief F H, Kakehi K, Murakami H. Anisotropic creep behavior of aluminized Ni-based single crystal superalloy TMS-75 [J]. Mater. Sci. Eng., 2013, A567: 65
|
72 |
Narita T. A view of compatible heat-resistant alloy and coating systems at high-temperatures [J]. AIP Conf. Proc., 2009, 1169: 63
|
73 |
Liu Y, Ru Y, Zhang H, et al. Coating-assisted deterioration mechanism of creep resistance at a nickel-based single-crystal superalloy [J]. Surf. Coat. Technol., 2021, 406: 126668
doi: 10.1016/j.surfcoat.2020.126668
|
74 |
Hüttner R, Gabel J, Glatzel U, et al. First creep results on thin-walled single-crystal superalloys [J]. Mater. Sci. Eng., 2009, A510-511: 307
|
75 |
Brunner M, Bensch M, Völkl R, et al. Thickness influence on creep properties for Ni-based superalloy M247LC SX [J]. Mater. Sci. Eng., 2012, A550: 254
|
76 |
Liu Y, Zhou H, Wu M M, et al. Coating-related deterioration mechanism of creep performance at a thermal exposed single crystal Ni-base superalloy [J]. Mater. Charact., 2022, 187: 111839
doi: 10.1016/j.matchar.2022.111839
|
77 |
Norton F H. The Creep of Steel at High Temperatures [M]. New York: McGraw-Hill Book Company, 1929: 70
|
78 |
Tian H, He L M, Mu R D. Effect of thermal barrier coatings on high cycle fatigue properties of DD6 single crystal superalloy [J]. Equip. Environ. Eng., 2019, 16(1): 41
|
78 |
田 贺, 何利民, 牟仁德. 热障涂层对DD6单晶高温合金高周疲劳性能的影响 [J]. 装备环境工程, 2019, 16(1): 41
|
79 |
Totemeier T C, King J E. Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part I [J]. Metall. Mater. Trans., 1996, 27A: 353
|
80 |
Liu Y, Qi H Y, Song J N, et al. Low-cycle fatigue of MCrAlY-coated superalloys: A fracture mechanics-based analysis [J]. Mater. Sci. Technol., 2021, 37: 151
doi: 10.1080/02670836.2020.1870265
|
81 |
Geng L L, Zhao W Y, Ru Y, et al. Tailoring coating composition for the associated microstructural stability of a single-crystal superalloy: An experimental and simulation study [J]. Corros. Sci., 2023, 211: 110916
doi: 10.1016/j.corsci.2022.110916
|
82 |
He J, Peng H, Gong S K, et al. Synergistic effect of reactive element co-doping in two-phase (γ' + β) Ni-Al alloys [J]. Corros. Sci., 2017, 120: 130
doi: 10.1016/j.corsci.2017.03.007
|
83 |
He J, Zhang Z, Peng H, et al. The role of Dy and Hf doping on oxidation behavior of two-phase (γ′ + β) Ni-Al alloys [J]. Corros. Sci., 2015, 98: 699
doi: 10.1016/j.corsci.2015.06.016
|
84 |
Wang Q M, Wu Y N, Guo M H, et al. Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers [J]. Surf. Coat. Technol., 2005, 197: 68
doi: 10.1016/j.surfcoat.2004.09.022
|
85 |
Guo C A, Wang W, Cheng Y X, et al. Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal René N5 superalloy [J]. Corros. Sci., 2015, 94: 122
doi: 10.1016/j.corsci.2015.01.048
|
86 |
Guo H B, Cui Y J, Hui P, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy [J]. Corros. Sci., 2010, 52: 1440
doi: 10.1016/j.corsci.2010.01.009
|
87 |
Lou H Y, Wang F H. Effective of Ta, Ti and TiN barriers on diffusion and oxidation kinetics of sputtered CoCrAlY coatings [J]. Vacuum, 1992, 43: 757
doi: 10.1016/0042-207X(92)90127-I
|
88 |
Narita T, Thosin K Z, Fengqun L, et al. Development of Re-based diffusion barrier coatings on nickel based superalloys [J]. Mater. Corros., 2005, 56: 923
doi: 10.1002/(ISSN)1521-4176
|
89 |
Li J C, Wei L L, He J, et al. The role of Re in improving the oxidation-resistance of a Re modified PtAl coating on Mo-rich single crystal superalloy [J]. J. Mater. Sci. Technol., 2020, 58: 63
doi: 10.1016/j.jmst.2020.03.054
|
90 |
Wu F, Murakami H, Suzuki A. Development of an iridium-tantalum modified aluminide coating as a diffusion barrier on nickel-base single crystal superalloy TMS-75 [J]. Surf. Coat. Technol., 2003, 168: 62
doi: 10.1016/S0257-8972(03)00009-4
|
91 |
Suzuki A, Wu F, Murakami H, et al. High temperature characteristics of Ir-Ta coated and aluminized Ni-base single crystal superalloys [J]. Sci. Technol. Adv. Mater., 2004, 5: 555
doi: 10.1016/j.stam.2004.03.004
|
92 |
Haynes J A, Zhang Y, Cooley K M, et al. High-temperature diffusion barriers for protective coatings [J]. Surf. Coat. Technol., 2004, 188-189: 153
doi: 10.1016/j.surfcoat.2004.08.066
|
93 |
Zhang Z, Bai B, Peng H, et al. Effect of Ru on interdiffusion dynamics of β-NiAl/DD6 system: A combined experimental and first-principles studies [J]. Mater. Des., 2015, 88: 667
doi: 10.1016/j.matdes.2015.09.041
|
94 |
Tan X P, Liu J L, Jin T, et al. Effect of Ru additions on very high temperature creep properties of a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2013, A580: 21
|
95 |
Wang Y, Guo H B, Peng H, et al. Diffusion barrier behaviors of (Ru, Ni)Al/NiAl coatings on Ni-based superalloy substrate [J]. Intermetallics, 2011, 19: 191
doi: 10.1016/j.intermet.2010.08.016
|
96 |
Wang D, Peng H, Gong S K, et al. NiAlHf/Ru: Promising bond coat materials in thermal barrier coatings for advanced single crystal superalloys [J]. Corros. Sci., 2014, 78: 304
doi: 10.1016/j.corsci.2013.10.013
|
97 |
Bai Z M, Li D Q, Peng H, et al. Suppressing the formation of SRZ in a Ni-based single crystal superalloy by RuNiAl diffusion barrier [J]. Prog. Nat. Sci.: Mater. Int., 2012, 22: 146
doi: 10.1016/j.pnsc.2012.03.007
|
98 |
Matsuoka Y, Chikugo K, Suzuki T, et al. Isothermal oxidation behavior of ru modified aluminide coating on a fourth generation single crystal superalloy [J]. Mater. Sci. Forum, 2006, 512: 111
doi: 10.4028/www.scientific.net/MSF.512
|
99 |
Tryon B, Murphy K S, Yang J Y, et al. Hybrid intermetallic Ru/Pt-modified bond coatings for thermal barrier systems [J]. Surf. Coat. Technol., 2007, 202: 349
doi: 10.1016/j.surfcoat.2007.05.086
|
100 |
Song Y X, Murakami H, Zhou C G. Cyclic-oxidation behavior of multilayered Pt/Ru-modified aluminide coating [J]. J. Mater. Sci. Technol., 2011, 27: 280
|
101 |
Kawagishi K, Harada H, Sato A, et al. EQ coating: A new concept for SRZ-free coating systems [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 761
|
102 |
Wang F, Tian X, Li Q, et al. Oxidation and hot corrosion behavior of sputtered nanocrystalline coating of superalloy K52 [J]. Thin Solid Films, 2008, 516: 5740
doi: 10.1016/j.tsf.2007.07.131
|
103 |
Liu C, Chen Y, Eggeman A S, et al. Pt effect on early stage oxidation behaviour of Pt-diffused γ-Ni/γ'-Ni3Al coatings [J]. Acta Mater., 2020, 189: 232
doi: 10.1016/j.actamat.2020.03.013
|
104 |
Haynes J A, Pint B A, Zhang Y, et al. The effect of Pt content on γ-γ′ NiPtAl coatings [J]. Surf. Coat. Technol., 2008, 203: 413
doi: 10.1016/j.surfcoat.2008.08.063
|
105 |
Sokol M, Wang J, Keshavan H, et al. Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based superalloy [J]. J. Eur. Ceram. Soc., 2019, 39: 878
doi: 10.1016/j.jeurceramsoc.2018.10.019
|
106 |
Li J M, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193: 108776
doi: 10.1016/j.matdes.2020.108776
|
107 |
Xu Z Z, Zhang P, Wang W, et al. AlCoCrNiMo high-entropy alloy as diffusion barrier between NiAlHf coating and Ni-based single crystal superalloy [J]. Surf. Coat. Technol., 2021, 414: 127101
doi: 10.1016/j.surfcoat.2021.127101
|
108 |
Cai Y C, Zhu L S, Cui Y, et al. High-temperature oxidation behavior of FeCoCrNiAl x high-entropy alloy coatings [J]. Mater. Res. Express, 2019, 6: 126552
doi: 10.1088/2053-1591/ab562d
|
109 |
Yang T F, Xia S Q, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of Al x CoCrFeNi High-entropy alloy [J]. Mater. Sci. Eng., 2015, A648: 15
|
110 |
Bao Z B, Wang Q M, Li W Z, et al. Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy [J]. Corros. Sci., 2009, 51: 860
doi: 10.1016/j.corsci.2009.01.003
|
111 |
Bababdani S M, Nogorani F S. Overaluminizing of a CoNiCrAlY coating by inward and outward diffusion treatments [J]. Metall. Mater. Trans., 2014, 45A: 2116
|
112 |
Kang J, Liu Y, Geng L L, et al. Microstructure and performance properties of 1200oC-servicing gradiently aluminized NiCrAlYSi coating for single-crystal nickel-based superalloy [J]. J. Alloys Compd., 2022, 924: 166619
doi: 10.1016/j.jallcom.2022.166619
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|