|
|
3D打印医用钛合金多孔材料力学性能研究进展 |
李述军( ), 侯文韬, 郝玉琳, 杨锐( ) |
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique |
LI Shujun( ), HOU Wentao, HAO Yulin, YANG Rui( ) |
Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
Shujun LI,
Wentao HOU,
Yulin HAO,
Rui YANG.
Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. Acta Metall Sin, 2023, 59(4): 478-488.
1 |
Gibson L J. Cellular solids [J]. MRS Bull., 2003, 28: 270
doi: 10.1557/mrs2003.79
|
2 |
Head W C, Bauk D J, Emerson Jr R H. Titanium as the material of choice for cementless femoral components in total hip arthroplasty [J]. Clin. Orthop. Relat. Res., 1995, (311): 85
|
3 |
Krishna B V, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants [J]. Acta Biomater., 2007, 3: 997
pmid: 17532277
|
4 |
Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications [J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 30
doi: 10.1016/j.jmbbm.2007.07.001
pmid: 19627769
|
5 |
Nune K C, Misra R D K, Gaytan S M, et al. Biological response of next-generation of 3D Ti-6Al-4V biomedical devices using additive manufacturing of cellular and functional mesh structures [J]. J. Biomater. Tiss. Eng., 2014, 4: 755
|
6 |
Banhart J. Manufacture, characterisation and application of cellular metals and metal foams [J]. Prog. Mater. Sci., 2001, 46: 559
doi: 10.1016/S0079-6425(00)00002-5
|
7 |
Zhang L C, Liu Y J, Li S J, et al. Additive manufacturing of titanium alloys by electron beam melting: A review [J]. Adv. Eng. Mater., 2018, 20: 1700842
doi: 10.1002/adem.v20.5
|
8 |
Murr L E. Frontiers of 3D printing/additive manufacturing: From human organs to aircraft fabrication [J]. J. Mater. Sci. Technol., 2016, 32: 987
doi: 10.1016/j.jmst.2016.08.011
|
9 |
Narra S P, Cunningham R, Beuth J, et al. Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V [J]. Addit. Manufact., 2018, 19: 160
|
10 |
Xu W, Lui E W, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance [J]. Acta Mater., 2017, 125: 390
doi: 10.1016/j.actamat.2016.12.027
|
11 |
Cheng X Y, Li S J, Murr L E, et al. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2012, 16: 153
doi: 10.1016/j.jmbbm.2012.10.005
pmid: 23182384
|
12 |
Murr L E, Gaytan S M, Medina F, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays [J]. Philos. Trans. Roy. Soc., 2010, 368A: 1999
|
13 |
Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method [J]. Acta Biomater., 2014, 10: 4537
doi: 10.1016/j.actbio.2014.06.010
pmid: 24969664
|
14 |
Murr L E, Amato K N, Li S J, et al. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1396
doi: 10.1016/j.jmbbm.2011.05.010
pmid: 21783150
|
15 |
Hernández-Nava E, Smith C J, Derguti F, et al. The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing [J]. Acta Mater., 2015, 85: 387
doi: 10.1016/j.actamat.2014.10.058
|
16 |
Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM) [J]. J. Mech. Behav. Biomed. Mater., 2010, 3: 249
doi: 10.1016/j.jmbbm.2009.10.006
pmid: 20142109
|
17 |
Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals [J]. Prog. Mater. Sci., 2001, 46: 309
doi: 10.1016/S0079-6425(00)00016-5
|
18 |
Hollister S J. Porous scaffold design for tissue engineering [J]. Nat. Mater., 2005, 4: 518
doi: 10.1038/nmat1421
pmid: 16003400
|
19 |
Li S J, Zhao S, Hou W T, et al. Functionally graded Ti-6Al-4V meshes with high strength and energy absorption [J]. Adv. Eng. Mater., 2016, 18: 34
doi: 10.1002/adem.v18.1
|
20 |
Zhang S Z, Li C, Hou W T, et al. Longitudinal compression behavior of functionally graded Ti-6Al-4V meshes [J]. J. Mater. Sci. Technol., 2016, 32: 1098
doi: 10.1016/j.jmst.2016.02.008
|
21 |
Yuan W, Hou W T, Li S J, et al. Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting [J]. J. Mater. Sci. Technol., 2018, 34: 1127
doi: 10.1016/j.jmst.2017.12.003
|
22 |
Li S J, Murr L E, Cheng X Y, et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting [J]. Acta Mater., 2012, 60: 793
doi: 10.1016/j.actamat.2011.10.051
|
23 |
Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. 2nd Ed., New York: Cambridge University Press, 1997: 453
|
24 |
Hedayati R, Hosseini-Toudeshky H, Sadighi M, et al. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials [J]. Int. J. Fatigue, 2016, 84: 67
doi: 10.1016/j.ijfatigue.2015.11.017
|
25 |
Li K, Gao X L, Subhash G. Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids [J]. Int. J. Solids Struct., 2005, 42: 1777
doi: 10.1016/j.ijsolstr.2004.08.005
|
26 |
Zhao S, Li S J, Hou W T, et al. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2016, 59: 251
doi: S1751-6161(16)00038-2
pmid: 26878293
|
27 |
Zargarian A, Esfahanian M, Kadkhodapour J, et al. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures [J]. Mater. Sci. Eng., 2016, C60: 339
|
28 |
Yavari S A, Ahmadi S M, Wauthle R, et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials [J]. J. Mech. Behav. Biomed. Mater., 2015, 43: 91
doi: 10.1016/j.jmbbm.2014.12.015
pmid: 25579495
|
29 |
Ahmadi S M, Hedayati R, Li Y, et al. Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type [J]. Acta Biomater., 2018, 65: 292
doi: S1742-7061(17)30698-0
pmid: 29127065
|
30 |
Zhao S, Li S J, Wang S G, et al. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting [J]. Acta Mater., 2018, 150: 1
doi: 10.1016/j.actamat.2018.02.060
|
31 |
Wang Q S, Li S J, Hou W T, et al. Mechanistic understanding of compression-compression fatigue behavior of functionally graded Ti-6Al-4V mesh structure fabricated by electron beam melting [J]. J. Mech. Behav. Biomed. Mater., 2020, 103: 103590
doi: 10.1016/j.jmbbm.2019.103590
|
32 |
Dai D H, Gu D D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres [J]. Appl. Surf. Sci., 2015, 355: 310
doi: 10.1016/j.apsusc.2015.07.044
|
33 |
Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Mater. Des., 2016, 95: 21
doi: 10.1016/j.matdes.2015.12.135
|
34 |
Dallago M, Fontanari V, Torresani E, et al. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting [J]. J. Mech. Behav. Biomed. Mater., 2018, 78: 381
doi: S1751-6161(17)30532-5
pmid: 29220822
|
35 |
Pyka G, Burakowski A, Kerckhofs G, et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing [J]. Adv. Eng. Mater., 2012, 14: 363
doi: 10.1002/adem.201100344
|
36 |
Liu Y J, Ren D C, Li S J, et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting [J]. Addit. Manuf., 2020, 32: 101060
|
37 |
Hao Y L, Li S J, Sun S Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater., 2007, 3: 277
pmid: 17234466
|
38 |
Wang H L, Hao Y L, He S Y, et al. Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy [J]. Acta Mater., 2017, 135: 330
doi: 10.1016/j.actamat.2017.06.040
|
39 |
Wang W J, Gong D L, Wang H L, et al. Spinodal decomposition coupled with a continuous crystal ordering in a titanium alloy [J]. Acta Mater., 2022, 233: 117969
doi: 10.1016/j.actamat.2022.117969
|
40 |
Liu Y J, Li S J, Wang H L, et al. Electron beam melted beta-type Ti-24Nb-4Zr-8Sn porous structures with high strength-to-modulus ratio [J]. J. Mater. Sci. Technol., 2016, 32: 505
doi: 10.1016/j.jmst.2016.03.020
|
41 |
Liu Y J, Li S J, Wang H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting [J]. Acta Mater., 2016, 113: 56
doi: 10.1016/j.actamat.2016.04.029
|
42 |
Liu Y J, Wang H L, Li S J, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting [J]. Acta Mater., 2017, 126: 58
doi: 10.1016/j.actamat.2016.12.052
|
43 |
Yang H X, Li S J, Hou W T, et al. Recoverable strain in a new biomedical Ti-24Nb-4Zr-8Sn alloy with cellular structure fabricated by electron beam melting [J]. Mater. Technol., 2020, 35: 881
doi: 10.1080/10667857.2019.1709287
|
44 |
Bai Y, Gai X, Li S J, et al. Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline [J]. Corros. Sci., 2017, 123: 289
doi: 10.1016/j.corsci.2017.05.003
|
45 |
Gai X, Liu R, Bai Y, et al. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: The significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97: 272
doi: 10.1016/j.jmst.2021.05.024
|
46 |
Gai X, Bai Y, Li S J, et al. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid [J]. Acta Biomater., 2020, 106: 387
doi: S1742-7061(20)30086-6
pmid: 32058079
|
47 |
Gai X, Bai Y, Li S J, et al. In-situ monitoring of the electrochemical corrosion behavior in fluoride environment of cellular structured Ti6Al4V alloy fabricated by electron beam melting [J]. Corros. Sci., 2021, 181: 109258
doi: 10.1016/j.corsci.2021.109258
|
48 |
Cao H J, Feng L F, Wu Z X, et al. Effect of low-intensity pulsed ultrasound on the biological behavior of osteoblasts on porous titanium alloy scaffolds: An in vitro and in vivo study [J]. Mater. Sci. Eng., 2017, C80: 7
|
49 |
Nune K C, Kumar A, Misra R D K, et al. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing [J]. Colloids Surf., 2017, 150B: 78
|
50 |
Nune K C, Misra R D K, Li S J, et al. The functional response of bioactive titania-modified three-dimensional Ti-6Al-4V mesh structure toward providing a favorable pathway for intercellular communication and osteoincorporation [J]. J. Biomed. Mater. Res., 2016, 104A: 2488
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|